首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
N‐Benzoylamino‐1,2,3,6‐tetrahydropyridines 9a‐q were synthesized from 4‐substituted pyridines in four steps. Amination of pyridines was carried out to prepare intermediate N‐aminopyridinium mesylates using mesytelenesulfonyl hydroxmate (MSH) as aminating agent. N‐aminopyridinium mestylates reacted with appropriately substituted acyl chlorides to form N‐ylides as stable crystalline solids. Partial reduction of N‐ylides with mild reducing agent afforded N‐benzoylamino‐1,2,3,6‐tetrahydropyridines in fair to good yields.  相似文献   

2.
The starting material O‐protected glycosyl isothiocyanate ( 1?3 ) was refluxed with 1,4‐diaminobenzene in CHCl3 under nitrogen atmosphere to give 1,4‐bis(N‐glycosyl)thioureidobenzene ( 4?6 ). Then 1,4‐bis[N‐(4/6‐substituted benzothiazole‐2‐yl)‐N′‐glycosylguanidino]benzenes ( 8a?8e , 9a?9e , 10a?10e ) were obtained in good yield by reaction of compounds ( 4?6 ) with 2‐amino‐4/6‐benzothizoles ( 7a?7e ) and HgCl2 in the presence of TEA in DMF. The structures of all 18 new compounds were confirmed by IR, 1H NMR, LC‐MS and elemental analysis. The bioactivity of anti‐HIV‐1 protease (HIV‐1 PR) and against angiotensin converting enzyme (ACE) have been evaluated.  相似文献   

3.
A series of new 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]pyrimidine derivatives were synthesised. Reaction of 2‐amino‐4,6‐dichloropyrimidine‐5‐carbaldehyde ( 1 ) with ethyl mercaptoacetate, methyl N‐methylglycinate or ethyl glycinate afforded ethyl (2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)thioacetate ( 2a ), methyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)‐N‐methylglycinate ( 2b ) and ethyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)glycinate ( 2c ), respectively. Compounds 2a,b by treatment with bases cyclised to the corresponding 2‐amino‐4‐chlorothieno‐ and pyrrolo[2,3‐d]pyrimidine‐6‐carboxylates ( 3a,b ). Heating 2,4‐diamino‐6‐chloropyrimidine‐5‐carbaldehyde ( 5 ) with ethyl mercaptoacetate or methyl N‐methylglycinate gave 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]‐pyrimidine‐6‐carboxylates ( 6a,b ), whereas compound 5 with ethyl glycinate under the same reaction conditions afforded ethyl N‐(2,4‐diamino‐5‐formylpyrimidin‐6‐yl)glycinate ( 7 ). Treatment of 2,4‐diaminothieno[2,3‐d]pyrimidine‐6‐carboxylic acid ( 8a ) with 4‐methoxy‐, 3,4,5‐trimethoxyanilines or ethyl N‐(4‐aminobenzoyl)‐L‐glutamate in the presence of dicyclohexylcarbodiimide and 1‐hydroxybenzotriazole furnished the corresponding N‐arylamides 9‐11.  相似文献   

4.
Methyl N‐methyl‐N‐(6‐substituted‐5‐nitropyrimidin‐4‐yl)glycinates ( 4a‐n ), obtained from 6‐substituted‐4‐chloro‐5‐nitropyrimidines and sarcosine methyl ester (methyl 2‐(methylamino)acetate), in the reaction with sodium alkoxides underwent transformations to give different products. N‐methyl‐N‐(5‐nitropyrimidin‐4‐yl)glycinates ( 4a,i,j ) bearing amino and arylamino groups in the position 6 of the pyrimidine ring gave corresponding 6‐substituted‐4‐methylamino‐5‐nitrosopyrimidines ( 5a,i,j ). In the reaction of N‐(6‐alkylamino‐5‐nitropyrimidin‐4‐yl)‐N‐methylglycinates ( 4b,f‐h ) with sodium alkoxides the corresponding 6‐alkylamino‐4‐methylamino‐5‐nitrosopyrimidines ( 5b,f‐h ) and 5‐hydroxy‐8‐methyl‐5,8‐dihydropteridine‐6,7‐diones ( 6b,f‐h ) were formed. The main products of the reaction of N‐(6‐dialkylamino‐5‐nitropyrimidin‐4‐yl)‐N‐methylglycinates ( 4c‐e,k,l ), after work‐up, were the corresponding 6‐dialkylamino‐9‐methylpurin‐8‐ones ( 7c‐e,k,l ) and 8‐alkoxy‐6‐dialkylamino‐9‐methylpurines ( 9c,1,10c,l ). Methyl N‐methyl‐N‐{[6‐(2‐methoxy‐oxoethyl)thio]‐5‐nitropyrimidin‐4‐yl}glycinate ( 4n ) under the same conditions gave methyl 7‐methylaminothiazolo[5,4‐d]pyrimidine‐2‐carboxylate ( 13 ). Mechanisms of the observed transformations are discussed.  相似文献   

5.
The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6‐propyl‐2‐thiouracil (PTU) with 2,4‐diaminopyrimidine (DAPY), and of 6‐methoxymethyl‐2‐thiouracil (MOMTU) with DAPY and 2,4,6‐triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (–CH2–) with an O atom in the side chain, thus introducing an additional hydrogen‐bond acceptor in MOMTU. Both molecules contain an ADA hydrogen‐bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N—H…O, N—H…N and N—H…S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4‐diaminopyrimidinium 6‐propyl‐2‐thiouracilate–2,4‐diaminopyrimidine–N,N‐dimethylacetamide–water (1/1/1/1) (the systematic name for 6‐propyl‐2‐thiouracilate is 6‐oxo‐4‐propyl‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C7H9N2OS·C4H6N4·C4H9NO·H2O, (I), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6‐methoxymethyl‐2‐thiouracil–dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6‐methoxymethyl‐2‐thiouracil–1‐methylpyrrolidin‐2‐one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4‐diaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate (the systematic name for 6‐methoxymethyl‐2‐thiouracilate is 4‐methoxymethyl‐6‐oxo‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C6H7N2O2S, (VI), and 2,4,6‐triaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate–6‐methoxymethyl‐2‐thiouracil (1/1), C4H8N5+·C6H7N2O2S·C6H8N2O2S, (VII). Whereas in (I) only an AA/DD hydrogen‐bonding interaction was formed, the structures of (VI) and (VII) both display the desired ADA/DAD synthon. Conformational studies on the side chains of PTU and MOMTU also revealed a significant deviation for cocrystals (VI) and (VII), leading to the desired enhancement of the hydrogen‐bond pattern within the crystal.  相似文献   

6.
The synthesis of derivatives of 2,3‐dihydroimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐thione 1,1‐dioxide is reported starting from N‐substituted ethyl 2‐(5‐chloro‐2‐nitrobenzenesulfonamido)‐2‐alkyl‐acetates. Fundamental steps of the synthetic pathway were: i) intramolecular cyclization of N‐substituted 2‐(2‐amino‐5‐chlorobenzenesulfonamido)‐2‐alkylacetic acids in the presence of N‐(3‐dimethyl‐aminopropyl)‐N′‐ethyl carbodiimide hydrochloride‐N,N‐dimethylaminopyridine complex; ii) building of imidazole ring from 2‐alkyl‐8‐chloro‐2,3‐dihydro‐3‐methyl‐1,2,5‐benzothiadiazepin‐4(5H)‐one 1,1‐dioxide to achieve 2‐alkyl‐9‐chloro‐2,3‐dihydro‐3‐methylimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐one 1,1‐dioxide; iii) preparation of thiocarbonyl derivative by treatment with Lawesson's reagent. Introduction of a 3‐methyl‐2‐butenyl chain at position 2 of above imidazobenzothiadiazepinone required protection at the 7 position with thermally removable tert‐butoxycarbonyl moiety, due to the fact that alkylation of unprotected structure proved to be regioselective for the 7 position.  相似文献   

7.
A versatile synthetic method for preparing 4‐hydroxyquinolone and 2‐substituted quinolone compounds from simple benzoic acid derivatives was demonstrated. The synthetic strategies involve the use of well known ethyl acetoacetate synthesis, malonic ester synthesis and reductive cyclization. The key intermediates were keto esters 4a‐e , which could be transformed to 4‐hydroxyquinolones 5a,b or 2‐substituted quinolone ethyl esters 6a‐c depending on the reaction conditions. 4‐Hydroxyquinolone analogues were prepared and investigated for N‐methyl‐D‐aspartate (NMDA) activity in vitro. Among these derivatives, 6,7‐difluoro‐3‐nitro‐4‐hydroxyquinolin‐2(1H)‐one ( 9 ) exhibited moderate activity.  相似文献   

8.
The synthesis of scopin acetate ( 6b ) and 6,7‐didehydrohyoscyamine ( 17 ) was achieved by using tropine ( 5 ) as the starting compound. Formal (phenylthio)‐radical transfer to the nonactivated 6‐position of ethyl N‐demethyl‐3‐O‐(phenylthio)tropine‐N‐carboxylate ( 9 ) by irradiation in the presence of hexabutyldistannane is a key step of this synthetic approach, involving ethyl 6,7‐didehydro‐N‐demethyltropine‐N‐carboxylate ( 15 ) as a synthetic intermediate (Schemes 3 and 5). The reaction of 9 with tributylstannane in the presence of ethyl acrylate, as a radicophilic olefin, involves Michael‐type alkylation at C(6) of the tropine skeleton affording ethyl N‐demethyl‐N‐(ethoxycarbonyl)tropine‐6‐propanoate ( 18 ) (Scheme 6).  相似文献   

9.
A series of seven nonclassical 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and one classical N‐[4‐(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrimidin‐6‐ylmethyl)benzoyl]‐L‐glutamic acid 9 (Table I) were designed as the first in a series of 6‐substituted 6‐5 fused ring analogs as potential thymidylate synthase (TS) inhibitors and as antitumor agents. The target compounds were synthesized via a Heck coupling of appropriately substituted iodobenzenes and allyl alcohol followed by cyclization using cyanoacetate and sulfur powder to afford substituted thiophenes. The resulting thiophenes were then cyclocondensed with chloroformamidine hydrochloride to afford 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and 26 . Hydrolysis of 26 followed by coupling with diethyl L‐glutamate afforded 28 . The classical analog 9 was obtained by hydrolysis of 28 . None of the target compounds inhibited human recombinant thymidylate synthase at 23 μm except 9 for which the IC50 value was 100 μm.  相似文献   

10.
Bicycle ring closure on a mixture of (4aS,8aR)‐ and (4aR,8aS)‐ethyl 2‐oxodecahydro‐1,6‐naphthyridine‐6‐carboxylate, followed by conversion of the separated cis and trans isomers to the corresponding thioamide derivatives, gave (4aSR,8aRS)‐ethyl 2‐sulfanylidenedecahydro‐1,6‐naphthyridine‐6‐carboxylate, C11H18N2O2S. Structural analysis of this thioamide revealed a structure with two crystallographically independent conformers per asymmetric unit (Z′ = 2). The reciprocal bicycle ring closure on (3aRS,7aRS)‐ethyl 2‐oxooctahydro‐1H‐pyrrolo[3,2‐c]pyridine‐5‐carboxylate, C10H16N2O3, was also accomplished in good overall yield. Here the five‐membered ring is disordered over two positions, so that both enantiomers are represented in the asymmetric unit. The compounds act as key intermediates towards the synthesis of potential new polycyclic medicinal chemical structures.  相似文献   

11.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

12.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

13.
The first organocatalytic enantioselective C? H alkenylation and arylation reactions of N‐carbamoyl tetrahydropyridines and tetrahydro‐β‐carbolines (THCs) are described. The metal‐free processes represent an efficient and straightforward approach to a variety of structurally and electronically diverse α‐substituted tetrahydropyridines and THCs in good yields with excellent regio‐ and enantioselectivities. Preliminary control experiments provide important insights into the reaction mechanism.  相似文献   

14.
Dehydrogenation of ethyl 3‐methyl‐4‐oxo‐4,5,6,7‐tetrahydrobenzofuran‐2‐carboxylate 1 with 2,2′‐azobi‐sisobutyronitrile and N‐bromosuccinimide gave ethyl 4‐hydroxy‐3‐methylbenzofuran‐2‐carboxylate 3 . Reaction of compounds 3–4 with hydrazine hydrate afforded the corresponding hydrazides 5a‐b . The reaction of 5a‐b with aldehydes yielded substituted hydrazones 6a‐l . Compounds 7a‐d were prepared from compounds 6a‐d and bromine in acetic acid. Lead tetraacetate oxidation of compounds 6e‐l afforded substituted oxadiazoles 8e‐l . Selenium dioxide oxidation of 4‐oxo‐4,5,6,7‐tetrahydrobenzofuran semicarbazones 9, 14a and 4‐oxo‐4,5,6,7‐tetrahydrobenzothiophene 14b gave the tricyclic 1,2,3‐selenadiazoles 10, 15a and 15b respectively. Reaction of semicarbazones 9, 14a and 14b with thionyl chloride afforded the corresponding 1,2,3‐thiadiazoles 12, 16a and 16b respectively.  相似文献   

15.
The title azo dye, 2‐(2‐methoxy­ethoxy)ethyl 4‐[(5‐cyano‐1‐ethyl‐4‐methyl‐2,6‐dioxo‐1,2,3,6‐tetra­hydro­pyridin‐3‐ylidene)hydrazino]benzoate, C21H24N4O6, with a 1‐ethyl‐5‐cyano‐2‐hydr­oxy‐4‐methyl‐6‐pyridone component, crystallizes in the hydrazone form. Hydrogen bonding mediates the formation of four‐mol­ecule aggregates, which are further grouped into an extended structure by π–π stacking inter­actions between the aromatic rings of adjacent mol­ecules, with a centroid–centroid separation of 3.697 (2) Å.  相似文献   

16.
The pyrimidine rings in ethyl (E)‐3‐[2‐amino‐4,6‐bis(dimethylamino)pyrimidin‐5‐yl]‐2‐cyanoacrylate, C14H20N6O2, (I), and 2‐[(2‐amino‐4,6‐di‐1‐piperidylpyrimidin‐5‐yl)methylene]malononitrile, C18H23N7, (II), which crystallizes with Z′ = 2 in the space group, are both nonplanar with boat conformations. The molecules of (I) are linked by a combination of N—H...N and N—H...O hydrogen bonds into chains of edge‐fused R22(8) and R44(20) rings, while the two independent molecules in (II) are linked by four N—H...N hydrogen bonds into chains of edge‐fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly‐substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.  相似文献   

17.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

18.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

19.
Regioselectively ethylated celluloses, 2‐O‐ ( 1 ), 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3 ) celluloses were synthesized via ring‐opening polymerization of glucopyranose orthopivalate derivatives. The number‐average degrees of polymerization (DPns) of compounds 1 and 2 were calculated to be 10.6 and 49.4, respectively. Three kinds of compound 3 with different DPns were prepared: DPns = 12.9 ( 3‐1 ), 60.3 ( 3‐2 ), and 36.1 ( 3‐3 ). The 2‐O‐, 3‐O‐, and 6‐O‐ethylcelluloses were soluble in water, confirmed by NMR analysis. Furthermore, the 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3‐2 ) celluloses showed thermo‐responsive aggregation behavior and had a lower critical solution temperature (LCST) at about 40 °C and 70 °C, respectively, based on the results from turbidity tests and DSC measurements. The 6‐O‐ethyl‐cellulose ( 3‐3 ) with DPn = 36.1 and DPw = 54.6 showed gelation behavior over approx 70 °C, whereas the 6‐O‐ethyl‐celluloses 3‐1 and 3‐2 with lower and higher molecular weight, such as DPns 12.9 and 60.3, did not show gelation behavior at this temperature. It was revealed that the position of ethyl group affected the phase transition temperature. According to our experiments, the 3‐O‐ethyl and 6‐O‐ethyl groups along the cellulose chains caused the thermo‐responsive property of their aqueous solutions. The appropriate DP of the regioselective 6‐O‐ethyl‐cellulose existed for gelation of the aqueous solution.

  相似文献   


20.
Dihydropyridazinones 4a , 4b , N‐substituted dihydropyrazoles 5b , 5c , 5d , and O‐substituted pyrazoles 6a , 6b , 6c , 6d have been synthesized starting from spirocyclopropanepyrazole derivative 2 . Treatment of 2 with α‐chloro esters, e.g., methyl chloroacetate, ethyl chloroacetate, isopropyl chloroacetate, and tert‐butyl chloroacetate, in potassium carbonate/sodium iodide system caused ring opening and subsequent C‐ or N‐attack nucleophilic substitution to give the corresponding dihydropyridazinones 4a , 4b and N‐substituted dihydropyrazoles 5b , 5c , 5d . On the other hand, in the absence of sodium iodide, O‐substituted pyrazoles 6a , 6b , 6c , 6d were obtained from 2 via an O‐attack nucleophilic substitution. J. Heterocyclic Chem., 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号