首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
用化学修饰法制备出复合物多壁碳纳米管/聚丙烯酸(MWCNTs/PAA),用溶剂热法合成Zn4O(1,4-benzenedicarboxylate)3(MOF-5)和MWCNTs/PAA/MOF-5。通过XRD、FTIR、TG、HRTEM和比表面积和孔隙度分析仪对MWCNTs,MOF-5,MWCNTs/PAA和MWCNTs/PAA/MOF-5的结构和性质进行表征。结果表明:复合材料MWCNTs/PAA中PAA包覆在碳纳米管外壁上,含量为4.3%,在FTIR中有PAA特征官能团的吸收峰;MWCNTs/PAA/MOF-5和MOF-5的形貌一样,MWCNTs/PAA/MOF-5的热分解温度比MOF-5的提高了49℃;MOF-5和MWCNTs/PAA/MOF-5的N2吸附曲线为Ⅰ型,77K和100kPa条件下,N2的吸附量达到最大值,分别为265、299.03 cm3·g-1。  相似文献   

2.
利用溶剂热法合成了不同锂含量的MOF-5(xLi-MOF-5, x=0, 1, 3, 5).在MOF-5结晶过程中,锂离子被合并入其骨架结构中.实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质.不同的xLi-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变.其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40% CO2/60% CH4混合气体具有最优吸附选择性.  相似文献   

3.
采用5-((4-吡啶基)甲氧基)-异烟酸(H2PLIA)、1,3,5-三(1-咪唑基)-苯(TIB)合成了金属有机骨架[Cd(PLIA)(TIB)]n (MOF-1),MOF-1是具有理想一维孔道的二维结构化合物,其一维孔道由柔性三角形PLIA2-配体和刚性三角形TIB配体间隔形成。利用MOF-1 易掺杂的优势,采用后修饰合成策略制备了Tb@MOF-1。对MOF-1 和Tb@MOF-1 进行了基本表征及荧光探针性能研究。2种探针材料具有相同的结构。MOF-1和Tb@MOF-1分别对水溶液中的Cr2O72-和S2O82-离子具有较强荧光识别能力,均有响应时间快,稳定性、选择性、灵敏度高的特点。研究了MOF-1和Tb@MOF-1对Cr2O72-和S2O82-的荧光识别机理,其不同可能与Tb3+离子掺杂有关。  相似文献   

4.
采用5-((4-吡啶基)甲氧基)-异烟酸(H2PLIA)、1,3,5-三(1-咪唑基)-苯(TIB)合成了金属有机骨架[Cd (PLIA)(TIB)]n (MOF-1)。MOF-1是具有理想一维孔道的二维结构化合物,其一维孔道由柔性三角形PLIA2-配体和刚性三角形TIB配体间隔形成。利用MOF-1易掺杂的优势,采用后修饰合成策略制备了Tb@MOF-1。对MOF-1和Tb@MOF-1进行了基本表征及荧光探针性能研究。2种探针材料具有相同的结构。MOF-1和Tb@MOF-1分别对水溶液中的Cr2O72-和S2O82-离子具有较强荧光识别能力,均有响应时间快,稳定性、选择性、灵敏度高的特点。研究了MOF-1和Tb@MOF-1对Cr2O72-和S2O82-的荧光识别机理,其不同可能与Tb3+离子掺杂有关。  相似文献   

5.
采用ONIOM(B3LYP/6-311++G(d,p):UFF)分层计算方法, 研究了C2-C5直链烯烃在HY 和H-ZSM-5 分 子筛上的吸附性质. 理论计算结果表明: 烯烃与分子筛的Br?nsted 酸性位相互作用形成π配位超分子复合物; 随着碳链的增长, 烯烃的吸附能增加, 增加量近似为一个常数(HY 分子筛: 约12 kJ·mol-1; H-ZSM-5 分子筛: 约 25 kJ·mol-1), 与烷烃在分子筛上的吸附具有相同的规律. 双键位置对烯烃的吸附能影响很大, 2位烯烃的吸附能 要远大于1 位烯烃的吸附能. 不同类型分子筛对烯烃的吸附性能也有很大差别, 由于局域效应的影响, 小孔径 H-ZSM-5分子筛上的吸附能大于大孔径的HY分子筛,而且碳链越长,这种差别越大.从微观结构上看,吸附的烯 烃与H-ZSM-5分子筛酸性位的距离要远大于它们与HY分子筛酸性位的距离, 这是由于不同类型分子筛的微孔 结构产生的范德华作用是不同的,这种作用随着孔径的减小而增强.前线轨道分析表明, 对于小分子烯烃,大孔径 HY分子筛对其催化活性相近,而小孔径H-ZSM-5分子筛随着烯烃碳原子数的增加催化活性有减弱的趋势.  相似文献   

6.
负载型P-Mo-V/SBA-15催化剂上的甲烷选择氧化反应   总被引:3,自引:0,他引:3  
以磷钼钒杂多酸(H5PMo10V2O40)为前驱体、介孔SBA-15为载体, 采用浸渍法制备不同负载量的P-Mo-V氧化物催化剂. 在甲烷选择氧化反应中, 考察了负载量、反应温度、空速等对甲烷转化率和产物选择性的影响. 结果表明, 催化剂对甲烷选择氧化制甲醛具有较高活性, 甲烷转化率随负载量的增大和反应温度的升高而提高, 甲醛的选择性随负载量的增大先升后降. 反应温度为640 ℃、空速为48300 L•kg-1•h-1、氧化物负载量w=2.89%时, 甲醛的时空产率最高(295 g•kgcat-1•h-1). 多种表征表明, 氧化物负载量w≤2.89%时, P-Mo-V氧化物在载体介孔孔道内以高分散形式存在. 催化剂的酸性和氧化还原性质与负载量相关, NH3-TPD和H2-TPR的测试结果表明, 较弱的酸性位和较低还原温度的活性组分有利于甲烷选择氧化制甲醛.  相似文献   

7.
利用密度泛函方法, 模拟金属铜原子簇Cu14(9,4,1)的(100)表面, 对丙烯腈(CH2=CHCN)在Cu(100)面上不同吸附位的吸附状况进行了理论研究. 结果表明: 丙烯腈分子通过端位N原子垂直吸附在金属表面上为弱化学吸附, 部分电荷从丙烯腈分子转移至铜金属簇; 由N原子的孤对电子与金属铜形成弱σ共价键; 顶位是最佳吸附位, 吸附能为40.7391 kJ•mol-1, N原子与金属表面间的平衡距离为0.2279 nm; 其次为桥位和穴位, 吸附能分别为36.2513和30.2158 kJ•mol-1, 平衡距离为0.2194和0.2886 nm; 吸附后C≡N键的强度降低, 活化了丙烯腈分子. 化学吸附使体系的熵减小, 是由于丙烯腈分子的平动和转动因吸附而被限制.  相似文献   

8.
采用表面改性法和等体积浸渍法制备了NiO-V2O5/SiO2和Cu/NiO-V2O5/SiO2光催化剂. 用TPR, XRD, UV-Vis DRS, IR和TPD-MS技术对催化剂的结构、吸光性能和化学吸附性能进行了表征, 研究了催化剂上CO2和甲醇光促表面催化反应的反应性能. 结果表明, 半导体NiO和V2O5复合后部分形成了Ni2+—O—V5+键联, 而且NiO和V2O5在催化剂表面有相互修饰作用, NiO的加入有助于提高V2O5在载体SiO2表面的分散程度, 抑制V2O5的聚集, 而且金属Cu和NiO的引入扩展了催化剂的光响应范围. 在催化剂表面存在多种活性吸附位, 催化剂对CO2和甲醇的有效吸附使得其在较低温度下就能促进碳酸二甲酯的紫外光化学合成. 用Cu/NiO-V2O5/SiO2催化剂, 在常压、空速300 h-1、140 ℃和125 W紫外灯辐照的情况下, CH3OH的转化率为14.2%, 碳酸二甲酯的选择性可达89.9 %.  相似文献   

9.
采用表面改性法和等体积浸渍法制备了NiO-V2O5/SiO2和Cu/NiO-V2O5/SiO2光催化剂. 用TPR, XRD, UV-Vis DRS, IR和TPD-MS技术对催化剂的结构、吸光性能和化学吸附性能进行了表征, 研究了催化剂上CO2和甲醇光促表面催化反应的反应性能. 结果表明, 半导体NiO和V2O5复合后部分形成了Ni2+—O—V5+键联, 而且NiO和V2O5在催化剂表面有相互修饰作用, NiO的加入有助于提高V2O5在载体SiO2表面的分散程度, 抑制V2O5的聚集, 而且金属Cu和NiO的引入扩展了催化剂的光响应范围. 在催化剂表面存在多种活性吸附位, 催化剂对CO2和甲醇的有效吸附使得其在较低温度下就能促进碳酸二甲酯的紫外光化学合成. 用Cu/NiO-V2O5/SiO2催化剂, 在常压、空速300 h-1、140 ℃和125 W紫外灯辐照的情况下, CH3OH的转化率为14.2%, 碳酸二甲酯的选择性可达89.9 %.  相似文献   

10.
分别以硝酸铝、硝酸氧锆、硝酸镧和硝酸铈为载体前驱体,与硝酸镍和尿素配制水溶液,采用溶液燃烧法制备了Ni-Al2O3、Ni-ZrO2、Ni-La2O3和Ni-CeO2催化剂,研究了浆态床CO甲烷化催化性能,并进行了低温N2吸附-脱附、XRD、SEM、TEM、H2-TPR和H2化学吸附等表征分析.结果表明,以硝酸铝为前驱体制备Ni-Al2O3催化剂时燃烧火焰稳定且持续时间长,达23 s,样品比表面积(468 m2·g-1)和金属Ni表面积(10 m2·g-1)均较大、Ni粒径小(3~5 nm)且分散度高,CO甲烷化催化活性和稳定性好,CO转化率和CH4选择性分别达到94%和95%,在100 h的甲烷化反应中未出现明显失活;以硝酸氧锆和硝酸镧为前驱体制备样品时未出现明显的燃烧火焰,持续时间仅为12 s和5 s,催化剂比表面积、金属表面积及催化活性均较低;以硝酸铈为前驱体制备样品时燃烧过程迅速而剧烈,样品比表面积(22 m2·g-1)和金属Ni表面积(5 m2·g-1)小、Ni粒径大且分散性差,甲烷化催化性能最差,CO转化率仅为41%,CH4选择性仅为89%.  相似文献   

11.
The H2O adsorption and dissociation on the Fe (100) surface with different precovered metals are studied by density functional theory. On both kinds of metal‐precovered surface, H2O molecules prefer adsorb on hollow sites than bridge and top sites. The impurity energy difference is proportional to the adsorption energy, but the adsorbates are not sensitive to the adsorption orientation and height relative to the surface. The Hirshfeld charge analysis shows that water molecules act as an electron donor while the surface Fe atoms act as an electron acceptor. The rotation and dissociation of H2O molecule occur on the Co‐ and Mn‐precovered surfaces. Some H2O molecules are dissociated into OH and H groups. The energy barriers are about 0.5 to 1.0 eV, whose are consistence with the experimental data. H2O molecules can be dissociated more easily at the top site on Co‐precovered surface 1 than that at bridge site on Mn‐precovered surface 2 because of the lower reaction barrier. The dispersion correction effects on the energies and adsorption configurations on Co‐precovered surface 1 were calculated by OBS + PW91. The dispersion contributions can improve a bit of the bond energy of adsorbates and weaken the hydrogen bond effect between adsorption molecules a little.  相似文献   

12.
The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4 H?CH+3 H?CH2+2 H?CH3+H?CH4, are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero‐point energy (ZPE) corrections are included. The C, CH and CH2 species are most stable at the fourfold hollow site, while CH3 prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero‐point energy corrections are rarely provided in the literature. Since they are derived from C? H bonds with characteristic vibrations on the order of 2500–3000 cm?1, the equivalent ZPE of 1/2 is on the order of 0.2–0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CHx and H, the ZPE correction is expected to be significant, as additional C? H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen‐containing species.  相似文献   

13.
14.
For Zn2+ cations in ZnZSM-5 zeolite unusual type of cationic positions, formed by two distantly placed framework aluminium atoms, is considered. Some extent of structural destabilization of cations in these cationic positions in comparison with traditional localization should result in promoted Lewis activity and adsorption activity of these sites. The last ones are manifested in the significantly increased IR low frequency shifts for adsorbed molecules and in their ability for heterolytic dissociation at elevating temperature. DFT cluster quantum chemical modeling of light alkane adsorption on Zn2+ in ZnZSM-5 zeolites confirms these conjectures in full agreement with recent experiments. Similar to the previously considered dihydrogen and methane molecule adsorption, we present here the calculations of ethane molecular and dissociative adsorption on these sites. It is shown that the unusually large ethane IR frequency shift recently observed in ZnZSM-5 zeolite can result from adsorptive interaction of C2H6 with Zn2+ stabilized in a cationic position with distantly placed aluminium ions. The dissociative adsorption of ethane molecules with the formation of bridged hydroxyl group and Zn–C2H5 structure is considered and an activation energy of ethylene formation from the alkyl fragment is evaluated.  相似文献   

15.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

16.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

17.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

18.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

19.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

20.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号