首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
An assembly strategy for metal nanoclusters using electrostatic interactions with weak interactions, such as C?H???π and π???π interactions in which cationic [Ag26Au(2‐EBT)18(PPh3)6]+ and anionic [Ag24Au(2‐EBT)18]? nanoclusters gather and assemble in an unusual alternating array stacking structure is presented. [Ag26Au(2‐EBT)18(PPh3)6]+ [Ag24Au(2‐EBT)18]? is a new compound type, a double nanocluster ion compound (DNIC). A single nanocluster ion compound (SNIC) [PPh4]+ [Ag24Au(2‐EBT)18]? was also synthesized, having a k‐vector‐differential crystallographic arrangement. [PPh4]+ [Ag24Au(2,4‐DMBT)18]? adopts a different assembly mode from both [Ag26Au(2‐EBT)18(PPh3)6]+ [Ag24Au(2‐EBT)18]? and [PPh4]+ [Ag24Au(2‐EBT)18]?. Thus, the striking packing differences of [Ag26Au(2‐EBT)18(PPh3)6]+ [Ag24Au(2‐EBT)18]?, [PPh4]+ [Ag24Au(2‐EBT)18]? and the existing [PPh4]+ [Ag24Au(2,4‐DMBT)18]? from each other indicate the notable influence of ligands and counterions on the self‐assembly of nanoclusters.  相似文献   

3.
4.
5.
6.
7.
8.
Recent developments in the field of microporous and mesoporous materials show the potential for applications in the area of environment protection, renewable energy exploitation, and health care.  相似文献   

9.
10.
Solvents play an essential role in many areas of chemistry and is the cornerstone of understanding reactivity in solution‐phase reactions. Solvent effects have been widely observed in intercalation reactions; however, understanding of the influence of solvents on the thermodynamics and kinetics remains largely elusive in intercalation chemistry. Now, the solvent‐dependent kinetics of ferrocene intercalation into a layered vanadyl phosphate (VOPO4?2 H2O) host is presented, with a special focus on primary alcohols. From methanol to 1‐hexnaol, the intercalation rate peaks in 1‐propanol (80 times faster than the slowest case in methanol). Similar kinetics of exfoliation are also found in these solvents without ferrocene. The correlation between intercalation and exfoliation is understood at atomic level by DFT calculations, which reveal the role of pre‐intercalated solvent molecules play in intralayer interactions, interlayer expansion, and layer sliding.  相似文献   

11.
12.
13.
Multimeric oxo‐hydroxo Al clusters function as models for common mineral structures and reactions. Cluster research, however, is often slowed by a lack of methods to prepare clusters in pure form and in large amounts. Herein, we report a facile synthesis of the little known cluster Al8(OH)14(H2O)18(SO4)5 ( Al8 ) through a simple dissolution method. We confirm its structure by single‐crystal X‐ray diffraction and show by 27Al NMR spectroscopy, electrospray‐ionization mass spectrometry, and small‐ and wide‐angle X‐ray scattering that it also exists in solution. We speculate that Al8 may form in natural water systems through the dissolution of aluminum‐containing minerals in acidic sulfate solutions, such as those that could result from acid rain or mine drainage. Additionally, the dissolution method produces a discrete Al cluster on a scale suitable for studies and applications in materials science.  相似文献   

14.
15.
16.
17.
Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6 and Li3YBr6 as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号