首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

2.
Self assembly of N-salicylidene 2-aminopyridine (L1H) with Cu(NO3)2·3H2O affords [Cu4(L1)4(NO3)3(CH3OH)][Cu(L1)(NO3)2](2-aminopyridinium)(NO3)·5CH3OH (1) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling (J = −340(2) cm−1) between Cu(II) ions through a double alkoxo bridge. Reacting L1H with Cu(NO3)2·3H2O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu4(L1)4(NO3)2(OH)2](2-aminopyridinium)(OH)·CH3OH) (2). A dinuclear Ni(II) complex, [Ni2(L2)2(L2H)2(NCS)2(CH3OH)2]·2CH3OH (3), obtained with another related donor ligand (L2H N-salicylidene 3-aminomethylpyridine) was also prepared.  相似文献   

3.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

4.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

5.
Four new coordination polymers {[Ni(HL)(H2O)]·H2O}n (1), {[Co(HL)(H2O)]·H2O}n (2), {[Co(HL)]·4H2O}n (3) and {[Zn(HL)]·2H2O·0.5C2H5OH}n (4) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid] have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 2 display (3, 3)-connected 2D network with (4, 82) topology. While 3 and 4 exhibit a binodal (3, 6)-connected 2D network with a Schläfli symbol (43)2(46, 66, 83). The complexes 14 show remarkable thermal stability and 4 exhibits blue fluorescence with maximum emission at 413 nm upon excitation at 362 nm in the solid state at room temperature. In addition, the magnetic measurements of 3 indicate that there are antiferromagnetic interactions between the neighboring Co(II) centers.  相似文献   

6.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

7.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

8.
The formation, crystal structure and properties of five copper(II) coordination compounds with the angular ligand, 4,4′-dipyridyl sulfide (dps) are described, {[Cu3(μ-dps)4(μ-SO4)2(SO4)(H2O)5] · 10H2O} (1 · 10H2O), [Cu(dps)4(H2O)2] · (ClO4)2 · H2O (2 · H2O), {[Cu(μ-dps)2(DMF)2](ClO4)2} (3), {[Cu(μ-dps)2(H2O)2] · (NO3)2 · 2H2O} (4 · 2H2O) and {[Cu3(μ-dps)6(DMF)2(H2O)4] · (NO3)6 · (DMF) · 6H2O} (5 · DMF · 6H2O). The topological architectures of all these coordination compounds are strongly dependent on the counteranions, with the aid of guest solvents, and include a chiral 3D non-interpenetrated structure for 1, an acentric mononuclear structure for 2, acentric 2D undulating networks for 3 and 5, and a chiral 1D double-stranded chain for 4. In particular, all these acentric or chiral coordination architectures are generated from an achiral ligand as a building unit, and their second-order non-linear optical (NLO) properties are also studied in this paper.  相似文献   

9.
A bioinorganic approach into the problem of the isomorphous substitution of calcium(II) by lanthanide(III) ions in biological systems is discussed. Reactions of malonamic acid (H2malm) with CaII and NdIII sources under similar conditions yielded the compounds [Ca(Hmalm)2]n (1), [Nd(Hmalm)2(H2O)2]n(NO3)n (2) and [Nd(Hmalm)2(H2O)2]nCln·2nH2O (3·2nH2O). Their X-ray crystal structure data show that the malonamate(-1) ligand presents two different ligation modes and coordinates through the two carboxylate and the amide-O atoms, thus bridging three CaII ions in 1 and two NdIII ions in 2 and 3·2nH2O. Complex 1 is a 3D coordination polymer based on neutral repeating units, whereas 2 and 3·2nH2O are 1D coordination polymers based on the same cationic repeating unit. Hydrogen bonding interactions further stabilize the 3D framework structure of 1 and assemble the 1D chains of 2 and 3·2nH2O into 3D networks. The three complexes were characterized spectroscopically (IR, far-IR, and Raman) and the thermal decomposition of 2 and 3·2nH2O was monitored by TG/DTA and TG/DTG measurements. Variable-temperature magnetic susceptibility data for 2 are also reported. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

10.
Reactions of copper(II) sources with 1,2-bis(4-pyridyl)ethane (bpe) yielded metal-organic networks with diverse topologies and dimensionalities. Compounds [Cu(bpe)2(dmf)2]n(ClO4)2n·2ndmf (1·2ndmf), [Cu(bpe)2(dmf)2]n(ClO4)2n·3.5ndmf (2·3.5ndmf), [Cu(bpe)2(NO3)2]n·2nH2O (4·2nH2O) and [Cu2(bpe)(O2CMe)4]n·0.7nH2O (5·0.7nH2O) have been isolated by altering the copper(II) source, the reaction solvent and the crystallization process. Compounds 1·2ndmf and 2·3.5ndmf consist of cationic [Cu(bpe)2(dmf)2]2+ repeating units assembled to 1D and 2D (4,4) networks, respectively, and represent supramolecular isomers due to the conformational isomerism of the bridging bpe molecules. Compound 4·2nH2O consists of neutral mononuclear [Cu(dpe)2(NO3)2] repeating units assembled to inclined interpenetrating (4,4) sheets describing an overall entanglement that is 3D in nature, and compound 5·0.7nH2O consists of neutral dinuclear repeating units assembled to cross-linked 1D chains.  相似文献   

11.
A series of oxovanadium(IV) complexes: TpVO(pzH)(2,4-Cl–C6H3–OCH2COO) (1), TpVO(pzH)(C6H5–OCH2COO) (2), TpVO(pzH)(p-Cl–C6H4–COO) (3), TpVO(pzH)(3,5-NO2–C6H3–COO) (4), Tp∗VO(pzH∗)(p-Cl–C6H4–COO) (5) and Tp∗VO(pzH∗)(p-Cl–C6H4–COO) · CH3OH (6) (Tp = hydrotris(pyrazolyl)borate, pzH = pyrazole, Tp∗ = hydrotris(3,5-dimethylpyrazolyl)borate, pzH∗ = 3,5-dimethylpyrazole) were synthesized and their crystal structures were determined by X-ray diffraction. In all the complexes, the vanadium ions are in a distorted-octahedral environment with a N4O2 donor set. Hydrogen bonding interaction exists in each complex. Complexes 1 and 2 are hydrogen-bonded dimers. Dimeric units of 2 are connected to one another via weak inter-molecular C–H···O interactions to form a 2D network on the bc-face. In 36 there exist intramolecular N–H···O hydrogen bonds between the neutral pyrazole/3,5-dimethylpyrazole and the uncoordinated carboxyl oxygen atom. In addition, the catalytic activity of complex 2 in a bromination reaction in phosphate buffer with phenol red as a trap was evaluated by UV–Vis spectroscopy. Furthermore, the elemental analyses, IR spectra and thermal stabilities were recorded.  相似文献   

12.
The new triply-bridged dinuclear copper(II) complexes, [Cu2(μ-O2CH)(μ-OH)2(dpyam)2](ClO4) · H2O (1), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(dpyam)2](S2O8) (2), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(bpy)2](NO3)2 (3), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(phen)2](BF4)2 · 0.5H2O (4), [Cu2(μ-O2CCH2CH3)(μ-OH)(μ-OH2)(phen)2](NO3)2 (5) and [Cu2(μ-O2CCH3)(μ-OH)(μ-Cl)(bpy)2]Cl · 8.5H2O (6) (dpyam = di-2-pyridylamine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized crystallographically and also their spectroscopic and magnetic properties have been studied. A structural classification of this type of dimers, based on the data obtained from X-ray diffraction analysis in the present work and those reported in the literature has been performed. In these complexes, the local geometry around the copper centre is generally a distorted square pyramid and distorted trigonal bipyramid with different degrees of distortion. The global geometry of the dinuclear complexes can be described in terms of the relative arrangement of the two five-coordinate environments, giving rise to different classes (A–F) of complexes. The most logical explanations have been provided for each class describing different magnetic interactions. Practically, there is a clear correlation between structural data and J values of the class B complexes. Extended Hückel calculations were performed for the present complexes 16, as well as for some other class B complexes, showing the different molecular orbitals involved in their corresponding frontier orbitals, together with their energy. The results are found to be useful for the proper interpretation and correlation of the magnetic data and the dinuclear structure of the present complexes.  相似文献   

13.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

14.
The synthetic investigation of the Cu(ClO4)2·6H2O/fumaric acid (H2fum)/N,N’-chelates (1,10-phen, 2,2′-bpy) tertiary reaction systems has yielded mononuclear, dinuclear and tetranuclear complexes, and three coordination polymers. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixtures and the N,N’-donor. Three fumarato(−2) complexes, i.e. compounds [Cu2(fum)(phen)4](ClO4)2·2H2O (1·2H2O), [Cu(fum)(phen)(H2O)]n (3) and [Cu2(fum)(bpy)2(H2O)2]n(ClO4)2n (6), were isolated and structurally characterized, and four non-fumarato complexes, i.e. compounds [Cu43-ΟΗ)22-ΟΗ)2(phen)4(H2O)2](ClO4)4·2H2O (2·2H2O), [Cu(ClO4)(phen) (MeCN)2(H2O)](ClO4) (4), [Cu(ClO4)(phen)(MeCN)2]n(ClO4)n (5) and [Cu(ClO4)2(bpy)(MeCN)2] (7), were simultaneously obtained from the reaction systems investigated. The coordination versatility of the fumarato(−2) ligand is reflected to the three different coordination modes observed in 1·2H2O, 3 and 6; the monodentate bridging μ2OO′ mode in 3, the asymmetric chelating bridging μ2OO′:κO′′:κO′′′ mode in 1·2H2O and 3, and the syn,syn bridging μ4OO′:κO′′:κO′′′ mode in 6. The crystal structures of the complexes are stabilized by intra- and inter-molecular hydrogen bonding and π–π stacking interactions leading to interesting supramolecular architectures. Characteristic IR bands of the complexes are discussed in terms of the known structures, and the coordination modes of the fum2− ligands.  相似文献   

15.
The reactions of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine with CuCl2 · 2H2O, Cu(NO3)2 · 3H2O and CuSO4 · 5H2O have been examined, and four [CuCl2(dppt)] (1), [CuCl2(dppt)2] · 2MeOH (2), [Cu(dppt)2(H2O)2](NO3)2 (3) and [Cu(SO4)(dppt)(H2O)]n · nH2O (4) complexes have been obtained. All the complexes have been structurally and spectroscopically characterized, and compound 4 has been additionally studied by magnetic measurements. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and the time-dependent DFT calculations have been employed to calculate the electronic spectrum of 1.  相似文献   

16.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

17.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

18.
The reaction between 3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridinecarboxaldehyde semicarbazone (pyridoxal-semicarbazone or PLSC) and appropriate chloride, sulfate, nitrate or thiocyanate Cu(II) salts in water/alcohol mixtures resulted in the formation of new copper(II) complexes: [Cu(PLSC)Cl2] (1), [Cu(PLSC)(H2O)(SO4)]2·3H2O (2), [Cu2(PLSC)2(NCS)2](NCS)2 (3), [Cu(PLSC)(NO3)2(CH3OH)] (4) and [Cu(PLSC-2H]NH3·H2O (5). The complexes were characterized by elemental analysis, conductometric measurements and IR spectroscopy, while complexes 1, 2, 3 and 4 were further characterized by single crystal X-ray diffraction.  相似文献   

19.
Three Co(II) and Cu(II)-pyridine-2,5-dicarboxylate (pydc) proton transfer compounds with 1,4-butanediamine (ben) and 2,2-dimethylpropane-1,3-diamine (dmpen), trans-(H2ben)[Co(pydc)2(H2O)2]·4H2O (1), trans-(H2dmpen)[Co(pydc)2(H2O)2]·2H2O (2) and (H2ben)2[Cu2(μ-pydc)4(H2O)2] (3) have been synthesized and characterized by the methods of elemental, spectroscopic (IR and UV-Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. The crystallographic analysis revealed that the complexes consist of [Co(pydc)2(H2O)2]2− anion, bis(protonated) diamine cation (H2ben for 1 and H2dmpen for 2) and four and two crystal water molecules, respectively. The Co(II) ions are coordinated by two pydc and two aqua ligands. The bis(deprotonated) pydc ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of carboxylate group, creating a chelate ring. The distorted octahedral geometries are completed by two trans aqua ligands at axial positions. The molecular structure of the complex 3 consists of dinuclear [Cu2(μ-pydc)4(H2O)2]4− units and bis(protonated) 1,4-butanediammonium cation. In the structure, each Cu(II) ion is coordinated by two nitrogen and two oxygen atoms from two pydc ligands and one oxygen atom from aqua ligand, forming a distorted square pyramidal geometry.  相似文献   

20.
Binuclear Rh(II) compounds [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](CH3COO)2 (1) (dbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine), [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](BF4)2·H2O·CH3CN (2), [Rh2(CH3COO)2(C18H24N2)2(CH3CN)2](BF4)2·4CH3CN (3) and {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) have been synthesized and characterized with spectroscopic methods. Structure of complex 3 has been determined using X-ray crystallography. Rhodium atoms in compound 3 have distorted octahedral coordination with O and N atoms in equatorial positions and Rh atom and CH3CN molecule in axial coordination sites. Reduction of rhodium(II) compounds with aqueous 2-propanol leads to the formation of polymetallic compound {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) containing [Rh2]3+ core. Compound 4 shows strong antiferromagnetic properties, μ = 0.18–1.73 M.B. in the range 1.8–300 K, J = −597 cm−1. Electrochemistry of compounds 3 and 4 in CH3CN has been investigated. Compound 4 exhibits a poorly reversible oxidation system at E1/2 = −0.92 V (ΔEp = 0.19 V) and in solution in DMF is slowly oxidized to 3 even in total absence of oxygen. Complex 3 is irreversibly oxidized to Rh(III) compound at Epa = 1.48 V and irreversibly reduced at Epc = −1.02 V to lead to the unstable polynuclear complex 4 in CH3CN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号