首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
脂肪腈是一类非常重要的化工原料和中间体,被广泛应用于医药、农用化学品、染料和合成树脂等领域.在诸多合成脂肪腈的路线中,脂肪醇氨氧化制备脂肪腈的路线使用可源于生物质资源的脂肪醇为原料,有助于“碳中和”和“碳达峰”目标的实现;同时,该反应副产物为水或氢气,符合“绿色”可持续发展的要求,具有重要的研究价值.根据脂肪醇氨氧化制备脂肪腈的过程中是否需要向体系中提供氧气,氨氧化过程可分为需氧氧化-氨化反应和脱氢氧化-氨化反应两类.需氧氧化-氨化反应在均相催化体系和非均相催化体系中均具有相关研究,而脱氢氧化-氨化反应的研究则主要集中在非均相体系中.按照以上分类,综述了脂肪醇氨氧化制备脂肪腈催化体系的研究进展,分析了不同种类催化体系的优势与尚存在的不足,并展望了该反应催化体系未来发展的方向.  相似文献   

2.
冯博  胡玉  李欢  侯震山 《有机化学》2008,28(3):381-389
非均相催化过程中常常出现产物的转化率低选择性差的问题, 而均相催化过程往往具有优异的催化性能, 但是却受制于催化剂、产物难于分离而达到循环使用的缺点. 近年来两相催化体系的发展为这些问题的解决提供了一条新途径. 超临界二氧化碳/聚乙二醇参与的两相体系是使用超临界二氧化碳作流动相, 聚乙二醇作为另一溶剂之一, 用于固定和稳定催化剂, 进行有机催化反应. 其显著特点是: 可在反应的同时实现分离的操作, 可实现均相催化过程的连续化. 综述了超临界二氧化碳/聚乙二醇体系的相行为及其性质, 并介绍了其在催化合成反应中的应用.  相似文献   

3.
烯烃氢酯基化反应是羰基合成领域的重要分支之一,长期以来一直备受关注。目前已发展了钯基、铑基、钴基、钌基等众多催化体系,其中钯-膦-酸催化体系因具有反应条件温和、底物普适性良好、催化性能优异等优点而得到最广泛、最深入的研究。因此,我们对均相、非均相的钯-膦-酸催化体系在烯烃氢酯基化反应中的研究应用进行了简要综述,并对催化机理、催化剂组成和性能进行讨论,最后指出稳定性高、可回收性好的非均相钯-膦-酸催化体系将是该领域的研究重点。  相似文献   

4.
Baeyer-Villiger氧化反应能控制产物的立体化学结构,在有机合成中对功能基转化和环扩张有重要的意义,因此氧化所得的产物可以广泛应用于合成许多天然产物和药物中间体以及一些高分子材料的单体等,是目前有机化学研究的热点之一。随着对该反应研究的深入,其催化剂的类型也在不断地增多,包括均相催化剂、非均相催化剂、生物催化剂。均相催化剂选择性和转化率虽高,但不及非均相催化剂重复利用率高。生物催化剂绿色环保,是未来研究的重点之一。本文从均相催化、非均相催化和生物催化三个方面对Baeyer-Villiger氧化反应相关的研究新进展进行了阐述,重点介绍了不同催化体系下催化剂与反应底物之间的作用,总结了有关催化反应的机理,并对Baeyer-Villiger氧化反应的发展进行了展望。  相似文献   

5.
近年来,有关外磁场对化学反应影响方面的研究十分引人注目,其研究范围以在非均相体系中进行的聚合反应、光化学反应和电化学反应居多,而对均相体系中的一些无机、有机反应却研究得很少。我们对在常温常压下磁场对合成乙酸乙酯反应的影响进行了一些探索,发现在均相体系中,磁场对该反应确有一定影响,该影响与磁处理时间、反应液流速、磁场的组合形式有关。  相似文献   

6.
催化的基础理论在过去的一个多世纪里已经有了长足的发展.始于20世纪60年代的表面科学,在为人们提供固体表面化学反应的分子图像以及反应与表面(电子)结构的关系上取得了重要进展.得益于上世纪末发展起来的纳米科学和技术,人们对催化的研究得以更加接近实际催化过程,得到的结果有望为实现高效催化体系的合理设计提供基础.本文简要回顾了催化基础理论研究发展的历程,描述了当前纳米催化领域的研究前沿和挑战,结合本实验室的研究结果,着重分析和探讨了纳米催化中的限域效应.  相似文献   

7.
极地平流层云及其非均相化学   总被引:3,自引:0,他引:3  
南极臭氧洞的形成与南极平流层云及其非均相化学过程有很大关系.南极平流层云中存在着硫酸气溶胶粒子、与硫酸/硝酸/水有关的固体或液体粒子以及水的冰晶粒子等,在其表面上可以发生非均相化学反应,一方面使本来比较惰性的硝酸氯(ClONO2)具有相当大的活性,另一方面可以把NO2或硝酸以硝酸固体粒子的形式从平流层中移走.由非均相化学产生的HOCl和Cl2发生光离解,产生活性氯,加强了与ClO的二聚物或者与ClO-BrO互反应有关的破坏臭氧的催化循环圈的进行,加快南极臭氧洞的形成.本文重点介绍极地平流层云及其非均相化学在极地平流层臭氧消耗过程中的作用,使人们对加重平流层臭氧消耗的非均相化学有所了解。  相似文献   

8.
金属卟啉配合物的催化氧化应用研究进展   总被引:6,自引:0,他引:6  
综述了近年来金属卟啉作为催化剂在各种氧化反应中应用的研究进展, 着重介绍了均相体系和非均相体系中各种金属卟啉模拟酶的催化性能.  相似文献   

9.
将Cr(salen)配合物分别嫁接于介孔SiO2,MCM-41和SBA-15上制备成非均相Schiff碱铬配合物,并用FT-IR,UV-Vis,XRD,N2吸附和元素分析等对非均相铬配合物进行了表征.以30%的H2O2为氧化剂,以非均相铬配合物为催化剂,在无有机溶剂、相转移催化剂和添加剂的条件下,研究了选择性催化氧化苯甲醇合成苯甲醛的反应.结果表明,非均相铬配合物都表现出较好的催化性能.选择不同的介孔载体对非均相铬配合物的催化性能有较大的影响,Cr(salen)/MCM-41配合物显示有最好的催化性能;在优化的反应条件下,苯甲醇转化率可达52.5%,苯甲醛选择性为100%,且该非均相铬配合物重复使用4次后仍保持较好的催化性能.  相似文献   

10.
甲醇羰基化合成醋酸是目前最重要的工业化催化反应之一。本文针对甲醇羰基化合成醋酸中最关键的催化剂部分做了详细阐述,重点介绍了铑基、铱基等均相催化体系的研究现状和最新研究成果,同时介绍了负载型催化剂研究进展,以及离子液体应用于均相催化和非均相催化羰基化反应中的研究现状。  相似文献   

11.
Modeling of catalytic coke formation in thermal cracking reactors   总被引:1,自引:0,他引:1  
At the start-up period, the most important mechanism in the coke production with a clean reactor surface is the catalytic mechanism. The study of this mechanism can be very useful for the better comprehension of the coke production process. In this paper, a model was designed for such a production through the utilization of a catalytic mechanism and a kinetic model, capable of interpreting the catalytic coke production on the reactor surface. For the determination of the model reliability, the experimental data related to the naphtha feed, existing in literature, were used. In addition, the constant parameters of the model, the velocity and the activation energy constants, associated to the kinetic model, were calculated. The results of the developed model were in satisfactory agreement with the experimental data. Eventually, the catalytic coke amount in comparison with the total coke production on the reactor surface and its significance were under investigation.  相似文献   

12.
Steady state analysis of a combined hybrid process consisting of a reactive distillation column, pervaporation unit, and a distillation column is presented. This process configuration was first presented by Steinigeweg and Gmehling (2004) for the transesterification of methyl acetate and butanol to butyl acetate and methanol. This system is characteristic for its low reaction rate and complex phase equilibrium. Steinigeweg and Gmehling (2004) have shown that the combination of reactive distillation and pervaporation is favourable since conversions close to 100 % can be reached with a reasonable size of the reactive section in the reactive distillation column. The aim of this paper is to show that although high conversion can be achieved, very complicated steady state behaviour must be expected. The presented analysis is based on mathematical modelling of a process unit, where the steady-state analysis, including continuation and bifurcation analyses, was used. Multiple steady states were predicted for the studied system; three steady states with conversions higher than 98 %. However, not all predicted steady states met the maximal allowed temperature condition in the reactive section (catalyst maximal operation temperature of 393 K). The presence of multiple steady states reduces the operability and controllability of the reactive distillation column during its start-up and during the occurrence of any variation of operating parameters because the system can be shifted from one steady state to another one (concurrent exceeding the maximal allowed temperature) with unwanted consequences, e.g. production loss. Therefore, design and subsequent operation of such a complicated system is an ambitious task requiring knowledge of any possible system behaviour.  相似文献   

13.
Summary: Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be developed. In this paper, the strategy is described for the development of the reactive distillation model. Essential parts of the reactive distillation model are kinetic and thermodynamic which are subsequently validated with the experimental data of the traditional batch process such as acid value of the polyester, weight of the distillate and glycol concentration in the distillate. We find that the models predict these important variables reliably. Unsaturated polyester production time is around 12 hours in the traditional batch process. However, the simulation study of the reactive distillation process shows that the total production time of unsaturated polyester in a continuous reactive distillation system is between 1.5 hours to 2 hours for the same product quality as during batch production. The equilibrium conversion is raised by 7% compared to the traditional batch process. The model demonstrated that reactive distillation has the potential to intensify the process by factor of 6 to 8 in comparison to the batch reactor.  相似文献   

14.
A vacuum membrane distillation (VMD) model has been developed and validated with experimental data. The model consists of an extended transport model for the VMD process and is able to predict the effects of concentration and temperature polarization on the overall process performance. To validate the model, first it was tested with few experimental case studies from literature [S. Bandini, G.G. Sarti, Heat and mass transport resistances in vacuum membrane distillation per drop, AIChE J. 45 (7) (1999) 1422–1433; K.W. Lawson, D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation, J. Membr. Sci. 120 (1996) 111–121; A.M. Urtiaga, G. Ruiz, I. Ortiz, Kinetic analysis of the vacuum membrane distillation of chloroform from aqueous solutions, J. Membr. Sci. 165 (2000) 99–110]. Then the VMD model has been validated with experimental data collected from the recovery of aroma compounds from black currant [R.B. Jørgensen, A.S. Meyer, C. Varming, G. Jonsson, Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation, J. Food Eng. 64 (2004) 23–31]. In this work, recovery of 12 characteristic volatile aroma compounds from black currant juice has been studied. The simulated results from the VMD model, in terms of aroma concentration in the permeate have been compared with those obtained from laboratory experiments. The validated model has been used to study the effects of various process and membrane parameters on the concentration factor. The physical properties of various aroma compounds have been predicted using group contribution method as a function of temperature.  相似文献   

15.
A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.  相似文献   

16.
Hybrid separation processes are becoming more and more important in the practice if membrane technologies are also involved. In this work, a systematic investigation is completed for three sequence alternatives of distillation and pervaporation. These are the following: pervaporation followed with distillation (PV+D), distillation followed with pervaporation (D+PV), two distillation columns and a pervaporation unit between them (D+PV+D). The hybrid separation process alternatives are evaluated with rigorous modelling tools, but first, a rigorous simulation algorithm is determined for the pervaporation. The three hybrid separation processes are rigorously modelled with CHEMCAD, and optimized with the dynamic programming optimization method for the case of the separation of ethanol-water mixture. The objective function is the total annual cost (TAC). The energy consumption is also investigated. The selection of the ethanol-water mixture has two motivations: (i) it is quite often studied and well known, and (ii) to make biofuel (ethanol) production more economical, membrane technologies might also be applied. The results are compared with each other and with the classical separation completed with heteroazeotropic distillation. The optimized TAC shows that the distillation column followed with pervaporation is the most economical hybrid separation process alternative. Its TAC is about 66% of that of the classical separation.   相似文献   

17.
对萃取精馏过程进行了非平衡热力学分析,提出了分离过程得以进行的判据.推导出了熵产生的数学表达式,并可将其用于萃取精馏过程的节能分析.此项研究结果只适用于萃取精馏板式塔,且在非平衡热力学的线性区域内  相似文献   

18.
The overall objectives of this study were to summarize and evaluate the performance of currently available membranes for purification of fermentation alcohol and to compare the economics of membrane processes with a modern-day energy-efficient distillation scheme.Literature survey showed that very little work had been done on the development of membrane processes for alcohol concentration.Based on laboratory work, it was found that the present-day thin-film composite desalination membranes can be used for partial concentration of beer solution to about 20 to 30% alcohol concentration. The water permeation coefficient for these membranes in reverse osmosis with 7.6% alcohol feed at 60 atm was about 10 kg/m2-day-atm (2 lb/ft2-day-atm).Due to the high osmotic pressures of ethanol/water mixtures, reverse osmosis can be used only for the initial concentration of beer solution and for the final dehydration of 95% alcohol to produce 199 proof alcohol. Thus, a distillation unit would have to be used for the intermediate concentration of alcohol solution. Membrane concentration schemes using distillation for intermediate concentration were prepared for comparison with a conventional distillation process. Based on preliminary analysis it was concluded that while the capital cost of the membrane-augmented distillation schemes can be significantly than that of the conventional system, the annualized cost of these schemes will be approximately equal to that for distillation. The capital and the annualized costs of the membrane process for the final dehydration of alcohol can be significantly lower than those for the conventional dehydration still.  相似文献   

19.
The citrus industry is one of the most important economic areas within the global agricultural sector. Persian lime is commonly used to produce lime juice and essential oil, which are usually obtained by batch distillation. The aim of this work was to validate a patented continuous steam distillation process and to both physically and chemically characterize the volatile fractions of essential Persian lime oil. Prior to distillation, lime juice was obtained by pressing the lime fruit. Afterwards, the juice was subjected to a continuous steam distillation process by varying the ratio of distillate flow to feed flow (0.2, 0.4, and 0.6). The distillate oil fractions were characterized by measuring their density, optical rotation, and refractive index. Gas chromatography GC-FID was used to analyze the chemical compositions of the oil fractions. The process of continuous steam distillation presented high oil recovery efficiencies (up to 90%) and lower steam consumption compared to traditional batch process distillation since steam consumption ranged from 32 to 60% for different steam levels. Moreover, a reduction in process time was observed (from 8 to 4 h). The oil fractions obtained via continuous steam distillation differed significantly in their composition from the parent compounds and the fractions.  相似文献   

20.
A large number of herb materials contain essential oils with extensive bioactivities. In this work, an integrated simultaneous distillation–extraction (ISDE) apparatus was developed. To demonstrate its feasibility, the performance of ISDE was evaluated for the extraction of essential oil from Flos Magnoliae and compared with conventional techniques including steam distillation (SD) and simultaneous distillation–extraction (SDE). According to the product yield, the time consumed and the composition of oil, the essential oils isolated by ISDE were better than that obtained by SD and similar to those obtained by SDE. ISDE was also better than SDE due to its simple operation and lower consumption of energy and organic solvent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号