首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of domain growth in phase-separated, mixed Langmuir-Blodgett (LB) monolayers of arachidic acid, C(19)H(39)COOH (AA) and perfluorotetradecanoic acid, C(13)F(27)COOH (PA) was tracked via atomic force microscope measurements. The growth rate of domains comprised of phase-separated AA was consistent with that predicted by the Lifshitz-Slyozov model for diffusion-limited Ostwald ripening. In addition to Ostwald ripening, some evidence for domain coalescence was also observed when LB films were deposited under conditions of low temperature and short incubation times, though this tendency disappeared at higher deposition temperatures.  相似文献   

2.
The morphology and composition of phase-separated Langmuir and Langmuir-Blodgett films of stearic acid (C17H35COOH) (SA) mixed with perfluorotetradecanoic acid (C13F27COOH) (PA) have been investigated using a combination of atomic force microscopy (AFM) measurements and surface pressure-area isotherms. At elevated surface pressures, the mixed film phase-separated to form a distinct series of lines (ripples), as opposed to the hexagons that have previously been observed with mixed films with longer alkyl chain fatty acids. At low surface pressures, phase separation is still observed, though a range of different domain structures was formed. The chemical composition of the phase-separated domains has been investigated by AFM-based compositional mapping, which has allowed unambiguous identification of the chemical composition of the domains. A simple mechanistic model describing how domain formation takes place in this system is presented.  相似文献   

3.
Phase-separated Langmuir-Blodgett monolayer films prepared from mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were stained via spin-casting with the polarity sensitive phenoxazine dye Nile Red, and characterized using a combination of ensemble and single-molecule fluorescence microscopy measurements. Ensemble fluorescence microscopy and spectromicroscopy showed that Nile Red preferentially associated with the hydrogenated domains of the phase-separated films, and was strongly fluorescent in these areas of the film. These measurements, in conjunction with single-molecule fluorescence imaging experiments, also indicated that a small sub-population of dye molecules localizes on the perfluorinated regions of the sample, but that this sub-population is spectroscopically indistinguishable from that associated with the hydrogenated domains. The relative importance of selective dye adsorption and local polarity sensitivity of Nile Red for staining applications in phase-separated LB films as well as in cellular environments is discussed in context of the experimental results.  相似文献   

4.
The morphologies of phase-separated monolayer films prepared from two different binary mixtures of perfluorocarbons and hydrocarbons have been examined and compared, for the first time, at the solid-air and liquid-air interfaces. Films were comprised of binary mixtures of arachidic acid (C(19)H(39)COOH) with perfluorotetradecanoic acid (C(13)F(27)COOH) and of palmitic acid (C(15)H(31)COOH) with perfluorooctadecanoic acid (C(17)F(35)COOH). For both mixed systems, Langmuir Blodgett films on mica substrates consisted of polygonal domains of one surfactant dispersed in a continuous matrix of the other (arachidic acid in perfluorotetradecanoic acid or perfluorooctadecanoic acid in palmitic acid, respectively), consistent with previous reports. Real-time imaging of the air-water interface via Brewster angle microscopy revealed that comparable film morphology was present at the air-water interface and the solid-air interface over a wide range of surface pressures, and that for the arachidic acid-based mixture, domain growth dynamics at the air-water interface is consistent with that inferred from sequential "static" atomic force microscope images collected at the solid-air interface.  相似文献   

5.
This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore.  相似文献   

6.
To make ultrathin films for the fabrication of artificial olfactory systems, odorant biosensors, we have investigated mixed Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile. Under optimized experimental conditions (phosphate buffer solution, pH 7.5, OBP-1F concentration of 4 mg L(-1), target pressure 35 mN m(-1)), the mixed monolayer at the air/water interface is very stable and has been efficiently transferred onto gold supports, which were previously functionalized by self-assembled monolayers (SAMs) with 1-octadecanethiol (ODT). Atomic force microscopy and electrochemical impedance spectroscopy were used to characterize mixed Langmuir-Blodgett (LB) films before and after contact with a specific odorant molecule, isoamyl acetate. AFM phase images show a higher contrast after contact with the odorant molecule due to the new structure of the OBP-1F/ODA LB film. Non-Faradaic electrochemical spectroscopy (EIS) is used to quantify the effect of the odorant based on the electrical properties of the OBP-1F/ODA LB film, as its resistance strongly decreases from 1.18 MOmega (before contact) to 25 kOmega (after contact).  相似文献   

7.
The mechanism of the formation and growth of phase-separated domains in mixed arachidic acid (C19H39COOH) (AA) and perfluorotetradecanoic acid (C13F27COOH) (PA) monolayer films was investigated through a combination of surface pressure-area isotherm measurements and atomic force microscope (AFM) imaging. In the mixed AA-PA monolayer system, distinct discontinuous domains consisting primarily of AA form spontaneously in a surrounding continuous matrix enriched in PA. By varying the monolayer deposition conditions, including temperature, surface pressure, and the mechanical agitation of sample solutions, it was determined that phase-separated nuclei are formed initially in the bulk sample solution and further growth of domains proceeds on the subphase surface via an Ostwald ripening process involving the diffusion of AA from the matrix to the discontinuous domains. In addition, selective dissolution of the arachidic acid followed by in situ AFM imaging has allowed the visualization of the fusion of AA to the phase-separated domains and has highlighted some unusual pattern formation that occurs at low subphase temperatures.  相似文献   

8.
DNA分子在气液界面的组装相变特性及其LB膜结构研究   总被引:5,自引:0,他引:5  
戴树玺  张兴堂  杜祖亮  党鸿辛 《化学学报》2003,61(12):2013-2015
对十八胺与DNA在气液界面上组装及其相变过程进行了研究,利用AFM观察了不 同压力下转移的DNA复合LB膜结构。发现在低表面压时,DNA复合单分子膜表现为技 术发散的分形结构;随着压力的升高,DNA复合膜逐渐由紧密的网状排布结构变为 团聚的块状和团簇结构。表明通过调节膜压,可使膜内DNA分子的构象发生大的变 化,从而生成具有特定形态的二维纳米图案。这种具有特殊形态和结构的DNA LB膜 可望为合成新型生物纳米结构有序功能体系提供模板。  相似文献   

9.
This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5'-(methyloxycarbonyl)pentyl-1'-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films.  相似文献   

10.
The structures of the mixed Langmuir-Blodgett (LB) films of conventional amphiphiles (CAs) and amphiphilic silane-coupling agents (SCAs) were investigated using IR spectroscopy, atomic force microscopy, and friction force microscopy. By using CAs having hydrogenated alkyl chains and SCAs having perfluorinated alkyl chains, phase-separated structures were formed with domains consisting of CAs surrounded by SCAs. The size and shape of the domains depended strongly on the mixed components, the mixing ratios, and the subphase temperature. In particular, usage of a CA having hydrogenated and perfluorinated portions in the hydrophobic group as one of the components led to the formation of nanothreads. When the phase-separated mixed LB films were heated, SCAs formed covalent bonds with the substrates having silanol groups whereas CAs did not have such ability. Rinsing the heat-treated LB films with ethanol selectively removed CAs with the SCA regions intact, resulting in the fabrication of templates. The structures of the templates reflected those of the original phase-separated LB films. LB transfer of amphiphiles on the templates led to the confinement of the amphiphiles in regions with the size and shape delineated by the templates. These results demonstrate that a variety of amphiphiles can be confined two-dimensionally in a designed manner.  相似文献   

11.
We report a versatile method to confine metal thin films in micro- and nanopatterns using directed self-assembly on the templates fabricated from phase-separated mixed Langmuir-Blodgett (LB) films. The pattern of the mixed LB films can be tuned by adjusting intermolecular interaction between the film-forming molecules in the LB films and by varying the fabrication conditions of the films such as the mixing ratio, subphase temperature, and surface pressure. We use the patterned LB films for templates to confine metal in patterned regions, taking advantage of the difference between the surface free energy of the patterned regions and that of the self-assembled monolayer of the silane coupling agent. Au nanoparticles are confined onto the patterned films as a catalyst for the succeeding Cu electroless deposition. The atomic force microscopic images, Auger electron spectra, and scanning Auger electron maps of a Cu-deposited film show that Cu is selectively deposited on the patterns of phase separation of the original mixed LB films.  相似文献   

12.
The fabrication of Langmuir and Langmuir-Blodgett (LB) films of an acid-azopolymer (PAzCOOH) is reported. Several techniques were used in their characterization: surface pressure (pi) and surface potential (DeltaV) isotherms, UV-vis reflection spectroscopy, and Brewster angle microscopy (BAM) for the Langmuir films and contact angle measurements, UV-vis, fluorescence, IR and Raman spectroscopy and scanning electronic microscopy (SEM) for the LB films. Our study reveals that lateral chains of the polymer situate preferentially onto the water surface with the acid group in contact with the water, where aggregates are scarcely formed. Therefore, the lateral chains of PAzCOOH can be treated as individual monomers to determine structural properties of the fabricated Langmuir and LB films. Monomeric treatment has been used to interpret UV-vis reflection spectroscopy, and a monomer model has been performed to represent lateral chains using density functional theory at B3LYP 6-31G(d,p) level of theory to assign the observed vibrational spectra.  相似文献   

13.
《Chemphyschem》2003,4(1):67-71
Correlation of molecular organization in crystals and in ultrathin films is of fundamental interest in the design of molecular materials based on thin films. We have chosen as a test case, N‐(2,4‐dinitrophenyl)‐n‐octadecylamine (DNPOA), a potential candidate for the fabrication of Langmuir–Blodgett (LB) films for quadratic nonlinear optical applications. Like several other 4‐nitroaniline derivatives, DNPOA does not form stable monolayers at the air–water interface. This has precluded investigations of their organization in LB films. We have stabilized composite Langmuir films of DNPOA with the phospholipid molecule DSPC and fabricated their LB films. Successful growth of single crystals of DNPOA allowed structure determination and detailed analysis of molecular associations in the solid state. Electronic absorption spectra of DNPOA in solution, in the solid state and in the LB film are investigated. Modeling of the various spectral signatures by semiempirical computations on molecular clusters extracted from the crystal lattice provides insight into the correlation between the molecular organization in crystals and in LB films.  相似文献   

14.
An investigation of two different Langmuir–Blodgett (LB) films, [4‐(6‐oxo‐hexacarboxylic acid)‐3‐trifluoromethyl‐azobenzene] (FAzo5COOH) and copolymer poly{2‐hydroxyethylmethacrylate}9co‐{6‐[3‐((trifluoromethyl)phenyl)azo] phenoxylhe‐Xylmeth‐acrylate}1(PHEMA‐co‐PFAzoPHA) films, is reported. The different structural behavior of the two types of films was first analyzed in detail by UV–visible spectroscopy. The different wettability of the films under UV–visible irradiation was subsequently studied by the contact‐angle technique. A large change of the contact angle (CA) was observed on PHEMA‐co‐PFAzoPHA films compared to the FAzo5COOH films before and after UV irradiation. The films were finally characterized by atomic force microscopy (AFM), and the morphologies were observed under UV–visible irradiation. The results indicate that the molecules are densely packed in the FAzo5COOH films compared to the PHEMA‐co‐PFAzoPHA films. It is attributed to the strong interaction between neighboring azobenzene moieties in the FAzo5COOH LB films of the smaller molecules. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The structure and composition of a phase-separated arachidic acid (C19H39COOH) (AA) and perfluorotetradecanoic acid (C13F27COOH) (PA) Langmuir-Blodgett monolayer film was characterized by several different types of atomic force microscopic measurements. At the liquid-air interface, surface pressure-area isotherms show that mixtures of the two acids follow the additivity rule expected from ideal mixtures. Topographic images of the deposited monolayer indicate that the surfactants are oriented normal to the substrate surface, and that the acids undergo phase separation to form a series of discontinuous, hexagonal domains separated by a continuous domain. A combination of lateral force (friction) imaging and adhesion force measurements show that the discontinuous domains are enriched in AA, whereas the surrounding continuous domain is a mixture of both AA and PA. This was further verified by selective, in situ dissolution of AA by n-hexadecane, followed by high-resolution topographical imaging of the discontinuous domains.  相似文献   

16.
"?Langmuir monolayers and LB films of 4-((s)-2-methylbutoxy)phenyl-(4'-(10-undecen-1-oyloxy)phenyl) methylenimine (MPUOPM) were investigated by ultraviolet-visible, polarized infrared spectroscopy. ?-A isotherms showed well-defined Langmuir monolayers were formed at an air/water interface for the MPUOPM and their mixture with SA. An inflection point at 13 mN/m appeared on the isotherm, which was due to the transition from the monolayer to multilayer. The polarized IR spectra of LB films of MPUOPM had provided new insight into the molecular orientation and structure. In LB films, the tilted angle between the alkyl chain and the normal line of the substrate was 48ffi, the tilted angle between the dipole moment of C=N and the normal line of the substrate was 51ffi. The alkyl chains assumed a trans-zigzag conformation but it included a few gauche conformers. The C=N groups were almost in one plane in the LB films. "  相似文献   

17.
The preparation, characterization and electrical properties of Langmuir–Blodgett (LB) films composed of a symmetrically substituted oligomeric phenylene ethynylene derivative, namely, 4,4′‐[1,4‐phenylenebis(ethyne‐2,1‐diyl)]dibenzoic acid (OPE2A), are described. Analysis of the surface pressure versus area per molecule isotherms and Brewster angle microscopy reveal that good‐quality Langmuir (L) films can be formed both on pure water and a basic subphase. Monolayer L films were transferred onto solid substrates with a transfer ratio of unity to obtain LB films. Both L and LB films prepared on or from a pure water subphase show a red shift in the UV/Vis spectrum of about 14 nm, in contrast to L and LB films prepared from a basic subphase, which show a hypsochromic shift of 15 nm. This result, together with X‐ray photoelectron spectroscopic and quartz crystal microbalance experiments, conclusively demonstrate formation of one‐layer LB films in which OPE2A molecules are chemisorbed onto gold substrates and consequently ? COO? Au junctions are formed. In LB films prepared on a basic subphase the other terminal acid group is also deprotonated and associates with an Na+ counterion. In contrast, LB films prepared from a pure water subphase preserve the protonated acid group, and lateral H‐bonds with neighbouring molecules give rise to a supramolecular structure. STM‐based conductance studies revealed that films prepared from a basic subphase are more conductive than the analogous films prepared from pure water, and the electrical conductance of the deprotonated films also coincides more closely with single‐molecule conductance measurements. This result was interpreted not only in terms of better electron transmission in ? COO? Au molecular junctions, but also in terms of the presence of lateral H‐bonds in the films formed from pure water, which lead to reduced conductance of the molecular junctions.  相似文献   

18.
A number of methodologies for immobilizing metal nanoparticles in 2‐dimensional aggregate structures on various substrates, some with concomitant tuning of the surface plasmon resonance (SPR), have been reported. Many of them involve special functionalization of the nanoparticles, multiple fabrication steps or lengthy procedures. The present study demonstrates that monolayer Langmuir–Blodgett (LB) film of a hemicyanine‐based amphiphile with cationic headgroup is an easily fabricated platform for harnessing citrate‐stabilized gold nanoparticles. It is shown that a single immersion step can be used to immobilize the nanoparticles uniformly on large area films and that systematic variation of the immersion time from 10 min to 6 h leads to controlled assembly of the particles and tuning of the SPR band over ~100 nm. A model for the structural reorganization in the LB film that facilitates the assembly of nanoparticles is presented and the advantages of the current methodology over earlier protocols are pointed out. The versatility of LB films in terms of the molecular level control of fabrication it enables and the variety of film structures that can be realized, point to the wide scope for future explorations, expanding upon the present observations.  相似文献   

19.
It has recently been found that monodisperse surface micelles (hemimicelles) were formed in Langmuir monolayers of the semifluorinated alkane C8F17C16H33 (F8H16) after transfer onto silicon wafers. Grazing incidence X-ray diffraction studies have demonstrated that compression of mixed Langmuir monolayers made from combinations of dipalmitoyl phosphatidylethanolamine (DPPE) and diblock F8H16 in various molar ratios resulted in the complete expulsion of the diblock molecule at high surface pressure. F8H16 then formed a second layer on top of a DPPE-only monolayer, demonstrating a novel type of reversible, pressure-induced, vertical phase separation. Using atomic force microscopy and X-ray reflectivity, we show now that mixed DPPE/F8H16 (1:1.3) Langmuir-Blodgett films transferred onto silicon wafers below 10 mN m(-1) are laterally phase separated and consist of domains of F8H16 surface micelles in coexistence with a monolayer of DPPE. The density of the network of F8H16 surface micelles increases when the surface pressure of transfer increases. Around 10 mN m(-1), the F8H16 surface micelles start to glide on the DPPE monolayer, progressively overlying it, until total coverage is achieved.  相似文献   

20.
Langmuir monolayers and Langmuir-Blodgett (LB) films of 5,10,15,20-tetra-(p-chlorophenyl) terbium/gadolinium porphyrin hydroxyl compound (TbOH and GdOH) and their mixtures with stearic acid (SA) in a molar ratio of 1:1 were investigated by Brewster angle microscopy (BAM), ultraviolet-visible (UV-vis), and infrared (IR) spectroscopy and atomic force microscopy (AFM). pi-A isotherms showed that well-defined Langmuir monolayers were formed at an air/water interface for the porphyrins and their mixture with SA. The BAM observations suggest that the pi-pi interaction between the GdOH molecules is stronger than that between the TbOH molecules. This result can be further confirmed by the AFM measurements. After the introduction of SA, the pi-pi interaction between the TbOH molecules is broken and thus two phases formed in the mixed LB film. However, it cannot break the stronger pi-pi interaction between the GdOH molecules. Therefore, no phase separation is observed in the GdOH/SA LB film. IR reflection-absorption (RA) spectra showed that the COOH groups of SA are partly converted to COO(-) groups, suggesting that there is an interaction between MOH and SA in the films. This interaction leads the benzene rings of TbOH to rotate toward parallel to the substrate and those of GdOH to rotate toward perpendicular to the substrate. All these results have demonstrated that the central metal ions have great effects on the organization and formation of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号