首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a statistical mechanics-based iterative method, we have extracted a set of distance-dependent, all-atom pairwise potentials for protein-ligand interactions from the crystal structures of 1300 protein-ligand complexes. The iterative method circumvents the long-standing reference state problem in knowledge-based scoring functions. The resulted scoring function, referred to as ITScore 2.0, has been tested with the CSAR (Community Structure-Activity Resource, 2009 release) benchmark of 345 diverse protein-ligand complexes. ITScore 2.0 achieved a Pearson correlation of R(2) = 0.54 in binding affinity prediction. A comparative analysis has been done on the scoring performances of ITScore 2.0, the van der Waals (VDW) scoring function, the VDW with heavy atoms only, and the force field (FF) scoring function of DOCK which consists of a VDW term and an electrostatic term. The results reveal several important factors that affect the scoring performances, which could be helpful for the improvement of scoring functions.  相似文献   

2.
Using a novel iterative method, we have developed a knowledge-based scoring function (ITScore) to predict protein-ligand interactions. The pair potentials for ITScore were derived from a training set of 786 protein-ligand complex structures in the Protein Data Bank. Twenty-six atom types were used based on the atom type category of the SYBYL software. The iterative method circumvents the long-standing reference state problem in the derivation of knowledge-based scoring functions. The basic idea is to improve pair potentials by iteration until they correctly discriminate experimentally determined binding modes from decoy ligand poses for the ligand-protein complexes in the training set. The iterative method is efficient and normally converges within 20 iterative steps. The scoring function based on the derived potentials was tested on a diverse set of 140 protein-ligand complexes for affinity prediction, yielding a high correlation coefficient of 0.74. Because ITScore uses SYBYL-defined atom types, this scoring function is easy to use for molecular files prepared by SYBYL or converted by software such as BABEL.  相似文献   

3.
We present results of testing the ability of eleven popular scoring functions to predict native docked positions using a recently developed method (Ruvinsky and Kozintsev, J Comput Chem 2005, 26, 1089) for estimation the entropy contributions of relative motions to protein-ligand binding affinity. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We use a test set of 100 PDB protein-ligand complexes and ensembles of 101 docked positions generated by (Wang et al. J Med Chem 2003, 46, 2287) for each ligand in the test set. To test the suggested method we compared the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock scoring function, by 2-25% with G-Score, by 7-41% with D-Score, by 0-8% with LigScore, by 1-6% with PLP, by 0-12% with LUDI, by 2-8% with F-Score, by 7-29% with ChemScore, by 0-9% with X-Score, by 2-19% with PMF, and by 1-7% with DrugScore. We also compared the performance of the suggested method with the method based on ranking by cluster occupancy only. We analyze how the choice of a clustering-RMSD and a low bound of dense clusters impacts on docking accuracy of the scoring methods. We derive optimal intervals of the clustering-RMSD for 11 scoring functions.  相似文献   

4.
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.  相似文献   

5.
Fast and accurate predicting of the binding affinities of large sets of diverse protein?ligand complexes is an important, yet extremely challenging, task in drug discovery. The development of knowledge-based scoring functions exploiting structural information of known protein?ligand complexes represents a valuable contribution to such a computational prediction. In this study, we report a scoring function named IPMF that integrates additional experimental binding affinity information into the extracted potentials, on the assumption that a scoring function with the "enriched" knowledge base may achieve increased accuracy in binding affinity prediction. In our approach, the functions and atom types of PMF04 were inherited to implicitly capture binding effects that are hard to model explicitly, and a novel iteration device was designed to gradually tailor the initial potentials. We evaluated the performance of the resultant IPMF with a diverse set of 219 protein-ligand complexes and compared it with seven scoring functions commonly used in computer-aided drug design, including GLIDE, AutoDock4, VINA, PLP, LUDI, PMF, and PMF04. While the IPMF is only moderately successful in ranking native or near native conformations, it yields the lowest mean error of 1.41 log K(i)/K(d) units from measured inhibition affinities and the highest Pearson's correlation coefficient of R(p)2 0.40 for the test set. These results corroborate our initial supposition about the role of "enriched" knowledge base. With the rapid growing volume of high-quality structural and interaction data in the public domain, this work marks a positive step toward improving the accuracy of knowledge-based scoring functions in binding affinity prediction.  相似文献   

6.
Recently, a knowledge‐based scoring function has been introduced that estimates the protein‐binding affinity based on the 3D structure of a protein–ligand complex (J Med Chem 1999, 42, 791). A ligand volume correction factor has been proposed and applied to filter out intraligand interactions in this simplified potential approach. Here we evaluate the effect of the ligand volume correction on the predictive power of the PMF scoring function. It is found that the effect of the ligand volume correction is significant on the derived potentials and large on the overall score. However, the effect of the ligand correction on the predictive power of the scoring function appears to be smaller. For a test set containing serine proteases the predictive power of the PMF scoring function does not change with the introduction of the volume correction. For a test set of metalloprotease complexes, the predictive power of the PMF scoring function improves only slightly when the volume correction is applied. For five test sets comprising a total of 225 diverse protein ligand complexes taken from the Brookhaven Protein Data Bank it is found, however, that the introduction of the ligand volume correction consistently improves the correlation between the PMF scores and the measured binding affinities. The effect of the correction factor on docking/scoring experiments is also analyzed using a test set of 61 biphenyl inhibitor‐stromelysin complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 418–425, 2001  相似文献   

7.
Virtual screening is becoming an important tool for drug discovery. However, the application of virtual screening has been limited by the lack of accurate scoring functions. Here, we present a novel scoring function, MedusaScore, for evaluating protein-ligand binding. MedusaScore is based on models of physical interactions that include van der Waals, solvation, and hydrogen bonding energies. To ensure the best transferability of the scoring function, we do not use any protein-ligand experimental data for parameter training. We then test the MedusaScore for docking decoy recognition and binding affinity prediction and find superior performance compared to other widely used scoring functions. Statistical analysis indicates that one source of inaccuracy of MedusaScore may arise from the unaccounted entropic loss upon ligand binding, which suggests avenues of approach for further MedusaScore improvement.  相似文献   

8.
9.
We assess the performance of several machine learning-based scoring methods at protein-ligand pose prediction, virtual screening, and binding affinity prediction. The methods and the manner in which they were trained make them sufficiently diverse to evaluate the utility of various strategies for training set curation and binding pose generation, but they share a novel approach to classification in the context of protein-ligand scoring. Rather than explicitly using structural data such as affinity values or information extracted from crystal binding poses for training, we instead exploit the abundance of data available from high-throughput screening to approach the problem as one of discriminating binders from non-binders. We evaluate the performance of our various scoring methods in the 2015 D3R Grand Challenge and find that although the merits of some features of our approach remain inconclusive, our scoring methods performed comparably to a state-of-the-art scoring function that was fit to binding affinity data.  相似文献   

10.
11.
12.
We present a novel scoring function for docking of small molecules to protein binding sites. The scoring function is based on a combination of two main approaches used in the field, the empirical and knowledge-based approaches. To calibrate the scoring function we used an iterative procedure in which a ligand's position and its score were determined self-consistently at each iteration. The scoring function demonstrated superiority in prediction of ligand positions in docking tests against the commonly used Dock, FlexX and Gold docking programs. It also demonstrated good accuracy of binding affinity prediction for the docked ligands.  相似文献   

13.
Fourteen popular scoring functions, i.e., X-Score, DrugScore, five scoring functions in the Sybyl software (D-Score, PMF-Score, G-Score, ChemScore, and F-Score), four scoring functions in the Cerius2 software (LigScore, PLP, PMF, and LUDI), two scoring functions in the GOLD program (GoldScore and ChemScore), and HINT, were tested on the refined set of the PDBbind database, a set of 800 diverse protein-ligand complexes with high-resolution crystal structures and experimentally determined Ki or Kd values. The focus of our study was to assess the ability of these scoring functions to predict binding affinities based on the experimentally determined high-resolution crystal structures of proteins in complex with their ligands. The quantitative correlation between the binding scores produced by each scoring function and the known binding constants of the 800 complexes was computed. X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP provided better correlations than the other scoring functions with standard deviations of 1.8-2.0 log units. These four scoring functions were also found to be robust enough to carry out computation directly on unaltered crystal structures. To examine how well scoring functions predict the binding affinities for ligands bound to the same target protein, the performance of these 14 scoring functions were evaluated on three subsets of protein-ligand complexes from the test set: HIV-1 protease complexes (82 entries), trypsin complexes (45 entries), and carbonic anhydrase II complexes (40 entries). Although the results for the HIV-1 protease subset are less than desirable, several scoring functions are able to satisfactorily predict the binding affinities for the trypsin and the carbonic anhydrase II subsets with standard deviation as low as 1.0 log unit (corresponding to 1.3-1.4 kcal/mol at room temperature). Our results demonstrate the strengths as well as the weaknesses of current scoring functions for binding affinity prediction.  相似文献   

14.
An improved potential mean force (PMF) scoring function, named KScore, has been developed by using 23 redefined ligand atom types and 17 protein atom types, as well as 28 newly introduced atom types for nucleic acids (DNA and RNA). Metal ions and water molecules embedded in the binding sites of receptors are considered explicitly by two newly defined atom types. The individual potential terms were devised on the basis of the high-resolution crystal and NMR structures of 2,422 protein-ligand complexes, 300 DNA-ligand complexes, and 97 RNA-ligand complexes. The optimized atom pairwise distances and minima of the potentials overcome some of the disadvantages and ambiguities of current PMF potentials; thus, they more reasonably explain the atomic interaction between receptors and ligands. KScore was validated against five test sets of protein-ligand complexes and two sets of nucleic-acid-ligand complexes. The results showed acceptable correlations between KScore scores and experimentally determined binding affinities (log K i's or binding free energies). In particular, KScore can be used to rank the binding of ligands with metalloproteins; the linear correlation coefficient ( R) for the test set is 0.65. In addition to reasonably ranking protein-ligand interactions, KScore also yielded good results for scoring DNA/RNA--ligand interactions; the linear correlation coefficients for DNA-ligand and RNA-ligand complexes are 0.68 and 0.81, respectively. Moreover, KScore can appropriately reproduce the experimental structures of ligand-receptor complexes. Thus, KScore is an appropriate scoring function for universally ranking the interactions of ligands with protein, DNA, and RNA.  相似文献   

15.
In this work we report on a novel scoring function that is based on the LUDI model and focuses on the prediction of binding affinities. AIScore extends the original FlexX scoring function using a chemically diverse set of hydrogen-bonded interactions derived from extensive quantum chemical ab initio calculations. Furthermore, we introduce an algorithmic extension for the treatment of multifurcated hydrogen bonds (XFurcate). Charged and resonance-assisted hydrogen bond energies and hydrophobic interactions as well as a scaling factor for implicit solvation were fitted to experimental data. To this end, we assembled a set of 101 protein-ligand complexes with known experimental binding affinities. Tightly bound water molecules in the active site were considered to be an integral part of the binding pocket. Compared to the original FlexX scoring function, AIScore significantly improves the prediction of the binding free energies of the complexes in their native crystal structures. In combination with XFurcate, AIScore yields a Pearson correlation coefficient of R P = 0.87 on the training set. In a validation run on the PDBbind test set we achieved an R P value of 0.46 for 799 attractively scored complexes, compared to a value of R P = 0.17 and 739 bound complexes obtained with the FlexX original scoring function. The redocking capability of AIScore, on the other hand, does not fully reach the good performance of the original FlexX scoring function. This finding suggests that AIScore should rather be used for postscoring in combination with the standard FlexX incremental ligand construction scheme.  相似文献   

16.
Applications in structural biology and medicinal chemistry require protein-ligand scoring functions for two distinct tasks: (i) ranking different poses of a small molecule in a protein binding site and (ii) ranking different small molecules by their complementarity to a protein site. Using probability theory, we developed two atomic distance-dependent statistical scoring functions: PoseScore was optimized for recognizing native binding geometries of ligands from other poses and RankScore was optimized for distinguishing ligands from nonbinding molecules. Both scores are based on a set of 8,885 crystallographic structures of protein-ligand complexes but differ in the values of three key parameters. Factors influencing the accuracy of scoring were investigated, including the maximal atomic distance and non-native ligand geometries used for scoring, as well as the use of protein models instead of crystallographic structures for training and testing the scoring function. For the test set of 19 targets, RankScore improved the ligand enrichment (logAUC) and early enrichment (EF(1)) scores computed by DOCK 3.6 for 13 and 14 targets, respectively. In addition, RankScore performed better at rescoring than each of seven other scoring functions tested. Accepting both the crystal structure and decoy geometries with all-atom root-mean-square errors of up to 2 ? from the crystal structure as correct binding poses, PoseScore gave the best score to a correct binding pose among 100 decoys for 88% of all cases in a benchmark set containing 100 protein-ligand complexes. PoseScore accuracy is comparable to that of DrugScore(CSD) and ITScore/SE and superior to 12 other tested scoring functions. Therefore, RankScore can facilitate ligand discovery, by ranking complexes of the target with different small molecules; PoseScore can be used for protein-ligand complex structure prediction, by ranking different conformations of a given protein-ligand pair. The statistical potentials are available through the Integrative Modeling Platform (IMP) software package (http://salilab.org/imp) and the LigScore Web server (http://salilab.org/ligscore/).  相似文献   

17.
18.
The growing number of protein–ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein–ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein–ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein–ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein–ligand complex structures available to improve predictions on binding.  相似文献   

19.
The ability to accurately predict biological affinity on the basis of in silico docking to a protein target remains a challenging goal in the CADD arena. Typically, "standard" scoring functions have been employed that use the calculated docking result and a set of empirical parameters to calculate a predicted binding affinity. To improve on this, we are exploring novel strategies for rapidly developing and tuning "customized" scoring functions tailored to a specific need. In the present work, three such customized scoring functions were developed using a set of 129 high-resolution protein-ligand crystal structures with measured Ki values. The functions were parametrized using N-PLS (N-way partial least squares), a multivariate technique well-known in the 3D quantitative structure-activity relationship field. A modest correlation between observed and calculated pKi values using a standard scoring function (r2 = 0.5) could be improved to 0.8 when a customized scoring function was applied. To mimic a more realistic scenario, a second scoring function was developed, not based on crystal structures but exclusively on several binding poses generated with the Flo+ docking program. Finally, a validation study was conducted by generating a third scoring function with 99 randomly selected complexes from the 129 as a training set and predicting pKi values for a test set that comprised the remaining 30 complexes. Training and test set r2 values were 0.77 and 0.78, respectively. These results indicate that, even without direct structural information, predictive customized scoring functions can be developed using N-PLS, and this approach holds significant potential as a general procedure for predicting binding affinity on the basis of in silico docking.  相似文献   

20.
New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号