首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly sensitive and very simple spectrophotometric flow-injection analysis (FIA) method for the determination of iron(III) at low concentration levels is presented. The method is based on the measurement of absorbance intensity of the red complex at 410 nm formed by iron(III) and diphenylamine-4-sulfonic acid sodium salt (DPA-4-SA). It is a simple, highly sensitive, fast, and low cost alternative method using the color developing reagent DPA-4-SA in acetate buffer at pH 5.50 and the flow-rate of 1 mL min−1 with the sample throughput of 60 h−1. The method provided a linear determination range between 5 μg L−1 and 200 μg L−1 with the detection limit (3S) of 1 μg L−1 of iron(III) using the injection volume of 20 μL. FIA variables influencing the system performance were optimized. The amount of iron(III) and total iron in river and seawater samples was successfully determined. Repeatability of the measurements was satisfactory at the relative standard deviation of 3.5 % for 5 determinations of 10 μg L−1 iron(III). The accuracy of the method was evaluated using the standard addition method and checked by the analysis of the certified material Std Zn/Al/Cu 43 XZ3F.  相似文献   

2.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

3.
This paper reports silica gel loaded with p-tert-butylcalix[8]arene as a new solid phase extractor for determination of trace level of uranium. Effective extraction conditions were optimized in column methods prior to determination by spectrophotometry using arsenazo(III). The results showed that U(VI) ions can be sorbed at pH 6 in a mini-column and quantitative recovery of U(VI) (>95–98%) was achieved by stripping 0.4 mol L−1 HCl. The sorption capacity of the functionalized sorbent is 0.072 mmol uranium(VI) g−1 modified silica gel. The relative standard deviation and detection limit were 1.2% (n = 10) for 1 μg uranium(VI) mL−1 solution and 0.038 μg L−1, respectively. The method was employed to the preconcentration of U(VI) ions from spiked ground water samples.  相似文献   

4.
A simple micellar liquid chromatographic technique for deltamethrin determination was developed and validated. The method provided to be suitable for deltamethrin determination in pediculicide shampoo. Kromasil C18 column (150 mm×4.6 mm, 5 μm) and mobile phase −0.12 M sodium dodecyl sulfate with 9% (v/v) 1-butanol were used for deltamethrin separation. Detection wavelength was 265 nm. The retention time was about 15 min. Different validation parameters were evaluated. The specificity of the method was demonstrated. Linearity was established in the range 10–40 μg L−1. The limits of detection and quantitation were 1.06 and 3.22 μg mL−1, respectively. The method showed excellent accuracy (100.6%) and precision (repeatability) gave a relative standard deviation of less than 1%. The influence of the various method parameters (robustness study) was also studied.  相似文献   

5.
A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L−1 HCl and 1% m/v K3[Fe(CN)6] with 1% m/v NaBH4 as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 μg L−1 and 1 μg L−1, respectively. The relative standard deviation varies between 2–6% (within-run) and 4–11% (between-run) at 3–30 μg L−1 Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2–25.8 μg L−1 Pb.  相似文献   

6.
A rapid and inexpensive method for simultaneous quantification of terbumeton (TER), and its major potential metabolites (TED; terbumeton-desethyl, TOH; terbumeton-2-hydroxy and TID; terbumeton-deisopropyl) in soil bulk water (SBW) samples is proposed. The analytical method involves extraction–concentration from SBW samples using a graphitized carbon black (GCB) cartridge followed by their separation–detection by reversed-phase high-performance liquid chromatography analysis using a C18 column and a diode array detector. A mobile phase of acetonitrile−0.005 mol L−1 phosphate buffer (pH 7.0) (35:65, v/v) at a flow rate of 0.8 mL min−1 in isocratic elution mode has been used. After optimization of the extraction and separation conditions, this method can be used for the simultaneous determination of investigated compounds in the range of the international limits of 0.1 μg L−1. For TER the detection limit was 0.009 μg L−1 and it was 0.100, 0.550, and 0.480 μg L−1 for TED, TOH, and TID, respectively. The recoveries of TER, TED, TOH, and TID from SBW samples, measured at three levels of concentration range, were found to be between 48.0 and 102.0%. The intra-day precision measured by relative standard deviation (RSD) was always lower than 9.0%.  相似文献   

7.
An integrated solid-phase spectrophotometry–FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-l-α-aspartyl-l-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at λ=210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid–dihydrogen phosphate buffer, 3.75×10–3 mol L−1, as carrier. Subsequent desorption of AS with methanol enables its determination at λ=205 nm. With a sampling frequency of 10 h−1, the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 μg mL−1, 0.30 μg mL−1, and 1.0% (80 μg mL−1, n=10), respectively, for SA and from 10.0 to 200.0 μg mL−1, 1.4 μg mL−1, and 1.6% (100 μg mL−1, n=10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.  相似文献   

8.
Dispersive liquid–liquid microextraction (DLLME) has been used for preconcentration of trihalomethanes (THMs) in drinking water. In DLLME an appropriate mixture of an extraction solvent (20.0 μL carbon disulfide) and a disperser solvent (0.50 mL acetone) was used to form a cloudy solution from a 5.00-mL aqueous sample containing the analytes. After phase separation by centrifugation the enriched analytes in the settled phase (6.5 ± 0.3 μL) were determined by gas chromatography with electron-capture detection (GC–ECD). Different experimental conditions, for example type and volume of extraction solvent, type and volume of disperser solvent, extraction time, and use of salt, were investigated. After optimization of the conditions the enrichment factor ranged from 116 to 355 and the limit of detection from 0.005 to 0.040 μg L−1. The linear range was 0.01–50 μg L−1 (more than three orders of magnitude). Relative standard deviations (RSDs) for 2.00 μg L−1 THMs in water, with internal standard, were in the range 1.3–5.9% (n = 5); without internal standard they were in the range 3.7–8.6% (n = 5). The method was successfully used for extraction and determination of THMs in drinking water. The results showed that total concentrations of THMs in drinking water from two areas of Tehran, Iran, were approximately 10.9 and 14.1 μg L−1. Relative recoveries from samples of drinking water spiked at levels of 2.00 and 5.00 μg L−1 were 95.0–107.8 and 92.2–100.9%, respectively. Comparison of this method with other methods indicates DLLME is a very simple and rapid (less than 2 min) method which requires a small volume of sample (5 mL).  相似文献   

9.
A simple, selective and sensitive kinetic method for the determination of nitrite in water was developed. The method is based on the catalytic effect of nitrite on the oxidation of methylene blue (MB) with bromate in a sulfuric acid medium. During the oxidation process, absorbance of the reaction mixture decreases with the increasing time, inversely proportional to the nitrite concentration. The reaction rate was monitored spectrophotometrically at λ = 666 nm within 30 s of mixing. Linear calibration graph was obtained in the range of 0.005–0.5 μg mL−1 with a relative standard deviation of 2.09 % for six measurements at 0.5 μg mL−1. The detection limit was found to be 0.0015 μg mL−1. The effect of different factors such as acidity, time, bromate concentration, MB concentration, ionic strength, and order of reactants additions is reported. Interference of the most common foreign ions was also investigated. The optimum experimental conditions were: 0.38 mol L−1 H2SO4, 5 × 10.4 mol L−1 KBrO3, 1.25 × 10.5 mol L−1 MB, 0.3 mol L−1 sodium nitrate, and 25°C. The proposed method was conveniently applied for the determination of nitrite in spiked drinking water samples.  相似文献   

10.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

11.
A simple and reliable method has been established for determination of cis and trans-1,3-dichloropropene (1,3-DCP) in water by headspace solid-phase microextraction (HS-SPME) then GC–ECD. An experimental design with two steps was performed to determine the best experimental conditions for extraction of the 1,3-DCP isomers. First, a 26−2 fractional factorial design was conducted to screen for significant conditions. Second, a central composite design (CCD) was performed to optimise the variables. The best experimental extraction conditions were: polydimethylsiloxane–divinylbenzene (PDMS–DVB)-coated fibre, 20-min extraction time, 12 °C extraction temperature, 300 g L−1 NaCl, and 20 mL headspace volume in 40-mL vial. Under these conditions the method detection limit (MDL) was 0.5 ng L−1 for cis-1,3-DCP and 1.0 ng L−1 for trans-1,3-DCP. The method quantification limit (MQL) was 1.2 ng L−1 for cis-1,3-DCP and 3.0 ng L−1 for trans-1,3-DCP. For both isomers the relative standard deviation (RSD) for analysis of 50 ng L−1 or 0.5 μg L−1 of the isomer mixture was less than 8%. When the proposed method was applied to surface (river) water and tapwater samples from Gipuzkoa province (Spain) the target analytes were not detected. The method was also used to investigate the presence of the isomers in leachates from agricultural soil. A mixed solution was added to samples of two different soils and 1,3-DCP isomers were quantified in leachate obtained from the samples.  相似文献   

12.
An anodic stripping voltammetric procedure for the determination of Cu(II) at an in situ-plated stannum film electrode (SnFE) was described. The results indicated that the SnFE had an attractive electroanalytical performance, with two distinct voltammetric stripping signals for copper and stannum, and showed the superior advantage for the determination of copper compared with the bismuth film electrode. Several experimental parameters were optimized. The SnFE exhibited highly linear behavior in the concentration range from 1.0 to 100.0 μg L−1 of Cu(II) (r = 0.994) with the detection limit of 0.61 μg L−1 (S/N = 3), and the relative standard deviation for a solution containing 40.0 μg L−1 Cu(II) was 2.2% (n = 8). The procedure has been successfully applied for the determination of Cu(II) in lake water sample.  相似文献   

13.
Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 μg L−1 for PNP, 0.20 μg L−1 for PAP, and 0.16 μg L−1 for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina. Figure Schematic representation of the cloud point extraction process.  相似文献   

14.
An inductively coupled plasma quadrupole mass spectrometer equipped with an octopole collision/reaction cell was used for the determination of cadmium in oyster tissue samples using isotope dilution inductively coupled plasma mass spectrometry. The oyster samples in question were found to contain Mo and Zr. In our feasibility study on a Cd standard solution (10 μg L−1) containing a matrix of Mo (1000 μg L−1) or Zr (250 μg L−1), the potentially interfering species (MoO+ or ZrO+) present at the analytical mass of cadmium concerned (m/z 111, 112 or 114) was reduced effectively through the use of a mixture of He and H2 as cell gases. The accuracy of the method was validated by the analysis of a matrix-matched certified reference material (CRM) of NIST SRM 1566b. The CRM was analyzed under the standard and He/H2 cell modes. Two isotopic pairs of 114Cd/111Cd and 112Cd/111Cd were selected for quantification purposes. The recoveries of cadmium obtained in the two cell modes were compared with each other. The validated method was applied successfully to the APMP.QM-P5 pilot study for international comparability purposes.  相似文献   

15.
A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 μg L−1 were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 μg L−1 (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).  相似文献   

16.
A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP–DRC–MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as 31P16O+ using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L−1 for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC–ICP–MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L−1 glyphosate and 2.8 μg L−1 AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5–2 μg L−1 and 4–14 μg L−1 for glyphosate and AMPA, respectively.  相似文献   

17.
With UV irradiation, Hg2+ in aqueous solution can be converted into Hg0 cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO2 more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO2-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02–0.04 μg L−1, with linear dynamic ranges up to 15 μg L−1. The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury. Image of the photo-CVG instrumentation showing the photoreactor inside the water cooling unit  相似文献   

18.
A new method for saccharin determination in liquid sweetener products was developed. The method is based on the precipitation reaction of Ag(I) ions with saccharin in aqueous medium (pH 3.0), using a flow injection analysis system with merging zones, the suspension was stabilized with 5 g L−1 Triton X-100. All experimental parameters influencing the flow injection system were optimized by means of chemometric approaches. The linear analytical curve was built from 2.4 g L−1 up to 9.64 g L−1 (r = 0.9968) with a quantification limit of 2.40 g L−1. The precision assessed as relative standard deviation (n = 10) was found to be 1.75 % for the saccharin concentration of 7.20 g L−1. Based on interference studies performed with the substances commonly found in liquid sweeteners, such as sodium cyclamate, methylparaben, sodium aspartame, and benzoic and citric acids, at the analyte to interferent mole ratio of up to 1: 10, no interference with the saccharin determination was observed. The presence of chloride ions interferes with the method, but a preceding liquid-liquid saccharin extraction with ethyl acetate was successfully employed to overcome this drawback. Accuracy of the method in sweetener products was evaluated by a comparison with the HPLC method.  相似文献   

19.
A. Zotou  Z. Loukou 《Chromatographia》2001,54(3-4):218-224
Summary An isocratic reversed-phase liquid chromatographic method for the simultaneous determination of hypericin and pseudohypericin, two of the main constituents ofHypericum Perforatum L., has been developed. The compounds were eluted from an Inertsil ODS-3, column by triethylammonium acetate-methanol-acetonirile (5:15:80) eluent and detected fluorimetrically, excitation 478, emission 598 nm. Hypericin and pseudohypericin were extracted from flowring tops by Soxhlet and pseudohypericin was isolated from the extract by collecting its chromatographic peak from the eluent flow. Identification of peaks was by HPLC coupled to a diode array detector and electrospray MS. The method was applied to the determination of hypericin and pseudohypericin in plant extract and in pharmaceutical tablets. For the latter a solid-phase extraction procedure was adopted. Riboflavin (0.1 ng.μL−1) was used as internal standard. The linear working range of the method is 0.025–4 ng.μL−1 and limit of detection 0.2 ng injected on-column. A comparative SPE study for hypericin is presented.  相似文献   

20.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号