首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了3种不同结构的三齿N-配体以及与铑形成的顺二羰基配合物.研究表明,正方平面顺二羰基铑配合物在遇热条件下,其配体中未参与配位的授体N原子可取代它的一个端羰基而形成新的三齿配位结构.而在CO气氛下,三齿配位结构回到二齿配位状态.正方平面铑配合物的这一特殊分子内取代可逆反应过程,对于研究这类配合物结构、性能及催化作用均有重要的意义.非正方平面顺二羰基铑配合物则不发生上述分子内取代反应.利用IR和XPS对上述反应进行了表征.  相似文献   

2.
beta-Aryl eliminations from a series of rhodium(I) alkoxides to form rhodium aryl complexes and free ketones are reported. Tertiary phenylmethoxide complexes [Rh(PEt3)n(OCPhRR')] (n = 2, 3) were prepared via alcoholysis of {Rh(PEt3)2[N(SiMe3)2} by the corresponding alcohols HOCPhRR' in the presence and absence of added PEt3. Heating of these complexes in the presence of added PEt3 generated the rhodium phenyl complex, (PEt3)3RhPh, and the corresponding ketones in good to high yields. Kinetic results are most consistent with irreversible beta-phenyl elimination from a bisphosphine-ligated rhodium alkoxide complex. Such bisphosphine complexes result from ligand dissociation from the trisphosphine complexes and have been isolated in some cases. The bisphosphine complexes are stabilized by Rh-Cphenyl interactions, as evidenced by an X-ray structure, and this structure with a metal-aryl interaction likely illustrates the pathway for C-C bond cleavage.  相似文献   

3.
The benzaldehyde thiosemicarbazones are found to undergo oxidation at the sulfur center upon reaction with [Rh(PPh3)3Cl] in refluxing ethanol in the presence of a base (NEt3). A group of organorhodium complexes are obtained from such reactions, in which the oxidized thiosemicarbazones are coordinated to rhodium as tridentate CNS donors, along with two triphenylphosphines and a hydride. From the reaction with para-nitrobenzaldehyde thiosemicarbazone, a second organometallic complex is obtained, in which the thiosemicarbazone is coordinated to rhodium as a tridentate CNS donor, along with two triphenylphosphines and a hydride. Reaction of the benzaldehyde thiosemicarbazones with [Rh(PPh3)3Cl] in refluxing ethanol in the absence of NEt3 affords another group of organorhodium complexes, in which the thiosemicarbazones are coordinated to rhodium as tridentate CNS donors, along with two triphenylphosphines and a chloride. Structures of representative complexes of each type of complexes have been determined by X-ray crystallography. In all of the complexes, the two PPh3 ligands are trans. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE. Redox responses of the coordinated thiosemicarbazones are also displayed by all of the complexes.  相似文献   

4.
The bisoxazolinyl-phenyl (Phebox) ligand is an example of an N,C,N tridentate (pincer type) ligand, which has a central carbon-metal covalent bond and two oxazolines. In this tutorial review, synthetic methods to prepare bisoxazolinyl-phenyl derivatives and their transition-metal complexes including rhodium, iridium, platinum, palladium, nickel and copper, are summarized. In addition, several applications to homogeneous and asymmetric catalysis with chiral bisoxazolinyl-phenyl metal complexes have been reviewed.  相似文献   

5.
Four kinds of square planar cis-dicarbonyl-N, N-bis(2-pyridylethy1)-p-substituted-phenylarnino rhodium(I) are reported. The changes of their structures were analyzed by XPS, IR and NMR spectroscopy. The results show that the weak N→Rh coordinated bond can replace very soon the strong Rh-Cπ back donation bond to form tris-nitrogen coordinated complexes due to the steric effect when the temperature is over 50°C. This reaction is reversible. The bis-nitrogen coordinated structure of the complex recovered when put under the atmosphere of CO.  相似文献   

6.
Reaction of 2-(2′-hydroxyphenylazo)phenol with [Rh(PPh3)3Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)3Cl] with 2-(2′-carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side.  相似文献   

7.
beta-Aryl eliminations from a series of iminyl complexes to form rhodium aryl complexes and free nitriles are reported. Iminyl complexes [Rh(PEt3)3(N=CArAr')] were prepared from [Rh(COE)Cl]2, PEt3, LiN(SiMe3)2, and the imines HN=CArAr'. One example of these complexes was characterized by X-ray diffraction. Heating of these complexes in cyclohexane generated the rhodium aryl complexes and free nitriles in high yields; heating in benzene formed the same products in slightly lower yields. Complexes with varied aryl groups on the imine were studied to assess the migratory aptitudes of the aryl groups. Migration of the o-anisyl group occurred much faster than migration of a phenyl group; migration of a phenyl group occurred slightly faster than migration of the more electron-rich p-anisyl group; and migration of a phenyl group occurred slightly faster than migration of the more hindered o-tolyl group. Kinetic studies showed that the reaction was inverse first-order in the concentration of added phosphine and zero-order in added nitrile. These results show that the beta-aryl elimination most likely occurs by dissociation of phosphine from the starting complex and carbon-carbon bond cleavage of the resulting 14-electron intermediate.  相似文献   

8.
Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to the rhodium centre via C4 (instantaneous activation) as compared to C2-bound carbene homologues (activation incomplete after 2 days). The slow C-H activation in normal C2-bound carbene complexes allowed intermediates to be isolated and suggests a critical role of acetate in mediating the bond activation process. Computational modelling supported by spectroscopic analyses indicate that halide dissociation as well as formation of the agostic intermediate is substantially favoured with C4-bound carbenes. It is these processes that discriminate the C4- and C2-bound systems rather than the subsequent C-H bond activation, where the computed barriers are very similar in each case. The tridentate dicarbene ligand undergoes selective H/D exchange at the C5 position of the C4-bound carbene exclusively. A mechanism has been proposed for this process, which is based on the electronic separation of the abnormal carbene ligand into a cationic N-C-N amidinium unit and a metalla-allyl type M-C-C fragment.  相似文献   

9.
Fu X  Li S  Wayland BB 《Inorganic chemistry》2006,45(24):9884-9889
Aqueous (D2O) solutions of tetrakis(3,5-disulfonatomesityl)porphyrin rhodium(III) aquo/hydroxo complexes ([(TMPS)Rh(III)(D2O)2]-7 (1), [(TMPS)Rh(III)(OD)(D2O)]-8 (2), and [(TMPS)Rh(III)(OD)2]-9 (3)) react with hydrogen (D2) to form an equilibrium distribution with a rhodium hydride ([(TMPS)Rh-D(D2O)]-8 (4)) and a rhodium(I) complex ([(TMPS)Rh(I)(D2O)]-9 (5)). Equilibrium constants (298 K) are measured that define the distribution for all five of these (TMPS)Rh species in this system as a function of the dihydrogen (D2) and hydrogen ion (D+) concentrations. The hydride complex [(TMPS)Rh-D(D2O)]-8 is a weak acid in D2O (Ka(298 K) = 4.3 x 10(-8)). Steric demands of the TMPS porphyrin ligand prohibit formation of a Rh(II)-Rh(II)-bonded complex, related rhodium(I)-rhodium(III) adducts, and intermolecular association of alkyl complexes which are prominent features of the rhodium tetra(p-sulfonatophenyl)porphyrin ((TSPP)Rh) system. The rhodium(II) complex ([(TMPS)Rh(II)(D2O)]-8) reacts with water to form hydride and hydroxide complexes and is not observed in D2O. The (TMPS)Rh-OD and (TMPS)Rh-D bond dissociation free energies (BDFE) are virtually equal and have a value of approximately 60 kcal mol(-1). Reactions of [(TMPS)Rh-D(D2O)]-8 in water with CO and olefins produce rhodium formyl and alkyl complexes which have equilibrium thermodynamic values comparable to the values for the corresponding substrate reactions of [(TSPP)Rh-D(D2O)]-4.  相似文献   

10.
Low-valent uranium-element multiple bond complexes remain scarce, though there is burgeoning interest regarding to their bonding and reactivity. Herein, isolation of a uranium(III)-carbon double bond complex [(Cp*)2U(CDP)](BPh4) ( 1 ) comprising a tridentate carbodiphosphorane (CDP) was reported for the first time. Oxidation of 1 afforded the corresponding U(IV) complex [(Cp*)2U(CDP)](BPh4)2 ( 2 ). The distance between U and C in 2 is 2.481 Å, indicating the existence of a typical U=C double bond, which is further confirmed by quantum chemical calculations. Bonding analysis suggested that the CDP also serves as both σ- and π-donor in complex 1 , though a longer U−C bond (2.666(3) Å) is observed. It implies that 1 is the first isolable mononuclear uranium(III) carbene complex. Moreover, these results suggest that CDPs are promising ligands to establish other low-valent f-block metal-carbon multiple bond complexes.  相似文献   

11.
63Cu NMR spectroscopic studies of copper(I) complexes with various N-donor tridentate ligands are reported. As has been previously reported for most copper(I) complexes, 63Cu NMR signals, when acetonitrile is coordinated to copper(I) complexes of these tridentate ligands, are broad or undetectable. However, when CO is bound to tridentate copper(I) complexes, the 63Cu NMR signals become much sharper and show a large downfield shift compared to those for the corresponding acetonitrile complexes. Temperature dependence of 63Cu NMR signals for these copper(I) complexes show that a quadrupole relaxation process is much more significant to their 63Cu NMR line widths than a ligand exchange process. Therefore, an electronic effect of the copper bound CO makes the 63Cu NMR signal sharp and easily detected. The large downfield shift for the copper(I) carbonyl complex can be explained by a paramagnetic shielding effect induced by the copper bound CO, which amplifies small structural and electronic changes that occur around the copper ion to be easily detected in their 63Cu NMR shifts. This is evidenced by the correlation between the 63Cu NMR shifts for the copper(I) carbonyl complexes and their nu(C[triple bond]O) values. Furthermore, the 63Cu NMR shifts for copper(I) carbonyl complexes with imino-type tridentate ligands show a different correlation line with those for amino-type tridentate ligands. On the other hand, 13C NMR shifts for the copper bound 13CO for these copper(I) carbonyl complexes do not correlate with the nu(C[triple bond]O) values. The X-ray crystal structures of these copper(I) carbonyl complexes do not show any evidence of a significant structural change around the Cu-CO moiety. The findings herein indicate that CO complexation makes 63Cu NMR spectroscopy much more useful for Cu(I) chemistry.  相似文献   

12.
合成了一种新的含有S、O未配位原子的高分子顺二羰基铑配合物 ,用IR和XPS数据研究了其分子内羰基取代反应 ,结果表明在遇热且无CO保护下S、O与铑形成的弱的S→Rh、O→Rh键可取代强的Rh→Cπ键 ,形成稳定的四配位结构 ,从而保护了铑不因末端羰基脱落而分解 ,提高了它的稳定性 ;其分子内取代反应是可逆的 ,在CO气氛下该结构又能够回复到二配位结构  相似文献   

13.
The B3LYP density functional studies on the dirhodium tetracarboxylate-catalyzed C-H bond activation/C-C bond formation reaction of a diazo compound with an alkane revealed the energetics and the geometry of important intermediates and transition states in the catalytic cycle. The reaction is initiated by complexation between the rhodium catalyst and the diazo compound. Driven by the back-donation from the Rh 4d(xz) orbital to the C[bond]N sigma*-orbital, nitrogen extrusion takes place to afford a rhodium[bond]carbene complex. The carbene carbon of the complex is strongly electrophilic because of its vacant 2p orbital. The C[bond]H activation/C[bond]C formation proceeds in a single step through a three-centered hydride transfer-like transition state with a small activation energy. Only one of the two rhodium atoms works as a carbene binding site throughout the reaction, and the other rhodium atom assists the C[bond]H insertion reaction. The second Rh atom acts as a mobile ligand for the first one to enhance the electrophilicity of the carbene moiety and to facilitate the cleavage of the rhodium[bond]carbon bond. The calculations reproduce experimental data including the activation enthalpy of the nitrogen extrusion, the kinetic isotope effect of the C[bond]H insertion, and the reactivity order of the C[bond]H bond.  相似文献   

14.
Christian Walter 《Tetrahedron》2009,65(28):5513-13543
A rhodium(I)-catalyzed activation of a silicon-boron linkage, that is, the transmetalation of silicon from boron to rhodium(I) by means of an RhI-OH complex, enables the conjugate transfer of nucleophilic silicon onto α,β-unsaturated acceptors. Pre- or in situ formed cationic rhodium(I)-binap complexes catalyze this novel carbon-silicon bond formation with exceptional enantiocontrol, 92 to >99% ee for cyclic carbonyl and carboxyl compounds as well as >99% ee for acyclic carboxyl compounds.  相似文献   

15.
2,4-Dihydroxybenzaldehyde S-allylisothiosemicarbazone hydrobromide, H2L, reacts with dioxo-molybdenum acetylacetonate in methanol to form a stable complex of dioxomolybdenum(VI). The ligand and complex are characterized with analytical and spectroscopic techniques. Single-crystal X-ray crystallography has been also carried out for the complex, showing it has distorted octahedral geometry. H2L is a tridentate dianionic ligand bonded as an ONN donor to molybdenum. Thermogravimetric analysis of the complex shows MoO3 as the final product above 780?°C. The results obtained from density functional theory calculations for the optimization and frequency analysis are in agreement with the experimental data. Natural bond orbital calculations show that the majority of the electron density of the donors tends to the molybdenum, since the calculated Mulliken charge for the central ion is much lesser than the formal value.  相似文献   

16.
The separation and isolation of many of the platinum group metals (PGMs) is currently achieved commercially using solvent extraction processes. The extraction of rhodium is problematic however, as a variety of complexes of the form [RhCln(H2O)6-n](n−3)− are found in hydrochloric acid, making it difficult to design a reagent that can extract all the rhodium. In this work, the synergistic combination of a primary amine (2-ethylhexylamine, LA) with a primary amide (3,5,5-trimethylhexanamide, L1) is shown to extract over 85 % of rhodium from 4 M hydrochloric acid. Two rhodium complexes are shown to reside in the organic phase, the ion-pair [HLA]3[RhCl6] and the amide complex [HLA]2[RhCl5(L1)]; in the latter complex, the amide is tautomerized to its enol form and coordinated to the rhodium centre through the nitrogen atom. This insight highlights the need for ligands that target specific metal complexes in the aqueous phase and provides an efficient synergistic solution for the solvent extraction of rhodium.  相似文献   

17.
Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C(2)H(4))(2)(C(5)H(7)O(2)) and characterized by infrared (IR), (13)C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 A, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H(2) to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C(2)D(4), and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.  相似文献   

18.
Rhodium transition-metal-organic cooperative catalysis, which has been intensively studied by many chemists, represents a great success in C–H bond activation because of high efficiencies and selectivities. Typically, in the reaction mechanism of aldehyde and alkene catalyzed by Rh(I) complex and 2-amino-3-picoline, two kinds of metala-cyclic transition-metal complexes of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III) alkyl are generally formed. The two complexes play an important role in the overall reaction, in which the Rh–C bond formations are involved. So it is meaningful to understand the strength of Rh–C bond, which can be measured by the homolytic bond dissociation enthalpies (BDEs). To this end, we first calculated 16 relative Rh–C BDEs of Tp′Rh(CNneopentyl)RH (Tp′?=?hydridotris-(3,5-dimethylpyrazolyl)borate) by 19 density functional theory (DFT) methods. Furthermore, the 5 absolute Rh–C BDEs of Rh transition-metal complexes were also calculated. The results show that the B97D3 is the most accurate method to predict the relative and absolute Rh–C BDEs and the corresponding RMSE values are the smallest of 2.8 and 3.3?kcal/mol respectively. Therefore, the Rh–C BDEs of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III)alkyl as well as the substituent effects were investigated by using the B97D3 method. The results indicated that the different substituents exhibit different effects on different types of Rh–C BDEs. In addition, the analysis including the natural bond orbital (NBO) as well as the energies of frontier orbitals were performed in order to further understand the essence of the Rh–C BDE change patterns.  相似文献   

19.
A C2-symmetric, chiral bis-cyclosulfinamide-olefin ligand composed of two 1-oxo-2,3-dihydro-1,2-benzisothiazole moieties with rigid skeletons and a conformationally flexible butenylene chain is disclosed for the first time. HRMS and 1H NMR analyses verify that the in situ-generated complex of the ligand and [Rh(C2H4)2Cl]2 possesses a rhodium (I) center coordinated to the tridentate ligand via two sulfinyl moieties and a CdbndC bond. The chiral ligand provided extremely high enantioselectivity (up to >99%ee) in the Rh-catalyzed asymmetric 1,4-additions of arylboronic acids to cyclohexenone and cyclopentenone. The tridentate ligand gave much higher enantioselectivity than the analogous chiral bidentate ligands.  相似文献   

20.
A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine is reported. The active catalyst is shown to contain the phosphine ligand bound in a κ(1), η(6) form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C═C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号