首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
We present a complex study of benzene adsorption on chemically modified commercial activated carbons. The porosity of studied carbons is almost the same, whereas the chemical composition and the acid-base properties of surface layers differ drastically from amphoteric (initial de-ashed carbon D43/1, Carbo-Tech, Essen, Germany) and acidic (carbon modified with concentrated HNO3 and fuming H2SO4) to strongly basic (carbon modified with gaseous NH3). Benzene adsorption isotherms measured from aqueous solution at three temperatures (298, 313, and 323 K) and at the neutral pH level are reported. They are supported by studies of water and benzene adsorption from the gaseous phase (volumetric and calorimetric data) and the data of benzene temperature-programmed desorption (TPD). Moreover, the data of the enthalpy of immersion in water and benzene are also presented. Obtained data of benzene adsorption from the gaseous phase are approximated by applying the method of Nguyen and Do (ND) and the Dubinin-Astakhov (DA) equation. The data of adsorption from solution are described by the hybrid DA-Freundlich (DA-F) model. We show that there are similarities in the mechanisms of benzene adsorption from the gaseous phase and from aqueous solutions and that the pore-blocking effect is the main stage of the adsorption mechanism. This effect strongly depends on the polarity of the carbon surface. The larger the ratio of the enthalpy of carbon immersion in water to the enthalpy of immersion in benzene, the larger the reduction in adsorption from solution, compared to that in the gaseous phase, that is observed.  相似文献   

4.
Commercial activated carbon D43/1 (Carbo-Tech, Essen, Germany) was deashed and modified chemically to increase surface acidity and basicity, as well as to introduce metal cations onto the surface and yet conserve the porosity. The five carbons obtained were applied as adsorbents. Based on the results of batch-reactor test kinetic measurements of the adsorption of 4-hydroxyacetanilide (paracetamol) from aqueous solution at the neutral pH and at three temperatures (300, 310, and 320 K), the values of the effective diffusion coefficient (D(e)) were calculated. It is shown that D(e) increases (up to the relative adsorption equal to approximately 0.6) with rise in the magnitude of the enthalpy of immersion of carbons in water. Based on the obtained results as well as those published previously, the role of surface composition in the mechanism of paracetamol adsorption and in the kinetics of this process is discussed. Copyright 2000 Academic Press.  相似文献   

5.
The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.  相似文献   

6.
The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.  相似文献   

7.
A series of commercial unmodified and modified activated carbons was studied. The surface chemical composition was characterized using X-ray photoelectron spectroscopy and Boehm titration methods. Data on p-nitrophenol (pnp) adsorption isotherms determined under real oxic and anoxic conditions (at 310 K) are presented and described using bimodal Langmuir and lattice density functional theory models. The applicability of the pnp molecule for determination of surface area using adsorption from solution data is discussed. It is shown that under anoxic conditions adsorption and relative enthalpy of this process depend on the value of BET apparent surface area and DA micropore volumes. The differences between adsorption levels under both conditions increase with rise in solute equilibrium concentration. Moreover, the average difference between adsorption values under both conditions increases and next decreases with rise in the concentration of surface acidic groups. Applying quantum chemical calculations, we show that under anoxic conditions the influence of surface oxygen groups on pnp adsorption is small, whereas under oxic conditions the reverse situation is observed. Obtained theoretical results show very good correspondence to the experimental data and the origin of the relationships observed experimentally is explained and discussed.  相似文献   

8.
Cyanide is considered one of the most dangerous compounds for the environment. They are discharged by various industries: chemical and metallurgical processes (extraction of gold and silver) and food industries. Adsorption is among the most used processes for elimination of cyanides particularly for the low concentrations. In this work, the cyanide removal is carried out by adsorption onto activated carbons prepared from olive stones and coffee ground. So we can promote this by-product as an inexpensive adsorbent. The prepared activated carbons are characterized by scanning electron micrograph and by determination of the physicochemical properties and specific surface area. All the adsorption experiments were performed in batch mode on synthetic water cyanide (KCN) at pH 10.8–11.0 to avoid volatilization of very toxic HCN. To describe the adsorption kinetics, the kinetic models of pseudo-first-order, pseudo-second-order, and intra-particle diffusion were applied. The experimental equilibrium data for adsorption of free cyanide were analyzed by the Langmuir, Freundlich, and Temkin isotherm models.  相似文献   

9.
The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon.  相似文献   

10.
The 15 most widespread adsorption isotherm equations are applied for describing recently published paracetamol adsorption data from aqueous solutions (pH 7). Twelve adsorption isotherms, measured at 300, 310, and 320 K, on the series of chemically modified carbons D43/1 (Carbo-Tech, Essen, Germany) differing in surface properties (from basic to strongly acidic) but possessing almost the same porosity, are analyzed. The results of fitting theoretical models to experimental data are arranged according to a decrease in the average value of the determination coefficient. From the models studied the best fit is obtained for Weber-Vliet, Dubinin-Astakhov, and the model published by Jossens. The most important conclusion is that at the lowest temperature studied, where the effect of carbon surface composition on adsorption properties is the most strongly marked, the value of paracetamol maximal adsorption decreases as the amount of surface basic groups and carbonyls increases.  相似文献   

11.
Steam-activated carbons DS2 and DS5 were prepared by gasifying 600 °C-date pits carbonization products with steam at 950 °C to burn-off = 20 and 50%, respectively. The textural properties of these carbons were determined from the nitrogen adsorption at ?196 °C. The chemistry of the carbon surface was determined from the surface pH and from neutralization of the surface carbon–oxygen groups of basic and acidic type. The kinetic and equilibrium adsorption of MB and RY on DS2 and DS5 was determined at 27 and 37 °C and at initial sorption solution pH 3–7.DS2 and DS5 have expanded surface area, large total pore volume and contain both micro and mesoporosity. They have on their surface basic and acidic groups of different strength and functionality. This enhanced the sorption of the cationic dye (MB) and of the anionic dye (RY). The adsorption of MB and RY on DS2 and DS5 involves intraparticle diffusion and followed pseudo-second order kinetics. The adsorption isotherms were applicable to the Langmuir isotherm and high monolayer capacities for MB and RY dyes were evaluated indicating the high efficiencies of the carbons for dye adsorption.  相似文献   

12.
Effects of hydrochloric acid and sodium hydroxide treatments of activated carbons (ACs) on chromium(VI) reduction were studied. The surface properties were determined by pH, acid-base values, FT-IR, and X-ray photoelectron spectrometer (XPS). And the porous structure of the activated carbons was characterized by adsorption of N(2)/77 K. The Cr(VI) adsorption experiments were carried out to analyze the influence of porous texture and surface properties changed by the chemical surface treatments of ACs on adsorption rate with carbon-solution contact time. From the experimental results, it was observed that the extent of adsorption and reduction processes depends on both microporous structure and functional groups. And the adsorption of Cr(VI) ion was more effective in the case of acidic treatment on activated carbons, resulting from the increases of acid value (or acidic functional group) of activated carbon surfaces. However, basic treatment on activated carbons was not significantly effective on the adsorption of Cr(VI) ion, probably due to the effects of the decrease of specific surface area and basic Cr(VI) in nature.  相似文献   

13.
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N(2) adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation.  相似文献   

14.
The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.  相似文献   

15.
Surface-modified carbon black for As(V) removal   总被引:1,自引:0,他引:1  
This paper reports the results of the adsorption performance of As(V) removal by a commercial carbon black and its H2SO4-modified form in a single-ion situation. The influence of different process parameters and the physicochemical principles involved were studied in detail. Acid modification caused morphological changes in the virgin carbon black as evidenced by BET surface area measurements and SEM study. FTIR spectra showed the introduction of sulfonic acid group in the parent carbon due to H2SO4 treatment. TGA analysis revealed higher weight loss characteristics of the modified carbon, demonstrating the creation of functional groups. The point of zero charge (pH pzc) of the modified carbon black is highly acidic (3.5) compared to commercial carbon black (6.4). It directly infers the generation of acidic functional moieties in the carbon black. The adsorption experiments were carried out following batch equilibrium techniques. The kinetics and thermodynamics of adsorption were investigated to unveil the mechanism and nature of the adsorption process, respectively. The kinetic parameters of different models were calculated and discussed. The kinetics of adsorption can be expressed by a pseudo-second-order model and intraparticle diffusion was not the rate-determining step. Dependence of pH on adsorption showed maximum metal uptake in the range of 4-5 and inferred surface complexion as the principal mechanism of adsorption. The equilibrium adsorption data were modeled using Freundlich, Langmuir, and Dubinin-Kaganer-Radushkevich (DKR) isotherm equations and the corresponding isotherm parameters were calculated and discussed in detail.  相似文献   

16.
The overall adsorption rate of single micropollutants present in landfill leachates such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two commercial activated carbons was studied. The experimental data obtained were interpreted by using a diffusional model (PVSDM) that considers external mass transport, intraparticle diffusion, and adsorption on an active site. Furthermore, the concentration decay data were interpreted by using kinetics models. Results revealed that PVSDM model satisfactorily fitted the experimental data of adsorption rate on activated carbon. The tortuosity factor of the activated carbons used ranged from 2 to 4. The contribution of pore volume diffusion represented more than 92% of intraparticle diffusion confirming that pore volume diffusion is the controlling mechanism of the overall rate of adsorption and surface diffusion can be neglected. The experimental data were satisfactorily fitted the kinetic models. The second-order kinetic model was better fitted the experimental adsorption data than the first-order model.  相似文献   

17.
In this work, fir woods and pistachio shells were used as source materials to prepare porous carbons, which were activated by physical (steam) and chemical (KOH) methods. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were first characterized by a t-plot method based on N(2) adsorption isotherms. Highly porous activated carbons with BET surface area up to 1009-1096 m(2)/g were obtained. The steam and KOH activation methods produced carbons with mesopore content in the range 9-15 and 33-49%, respectively. The adsorption equilibria and kinetics of tannic acid, methylene blue, 4-chlorophenol, and phenol from water on such carbons at 30 degrees C were then investigated to check their chemical characteristics. The Freundlich equation gave a better fit to all adsorption isotherms than the Langmuir equation. On the other hand, the intraparticle diffusion model could best follow all adsorption processes. In comparison with KOH-activated carbons, it was shown that the rate of external surface adsorption with steam-activated carbons was significantly higher but the rate of intraparticle diffusion was much lower.  相似文献   

18.
The present work consists in studying the adsorption of phenol onto zeolites Y modified by silylation, in order to increase their hydrophobic character. The operation was carried out by chemical liquid deposition with trimethylchlorosilane (TMCS). Study of the effect of certain parameters like initial concentration, pH and ionic strength were conducted. Experimental data were fitted by the models of Langmuir, Freundlich and Dubinin-Raduskevich calculated by non-linear regression. Results obtained show that the adsorption of phenol on samples is very fast and supported at acidic values of pH. We also found that phenol uptake increases with Si/Al ratio and modification by silylation improves the percentage of adsorption by approximately 30%.  相似文献   

19.
Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate.  相似文献   

20.
A natural peat has been used as an adsorbent for the removal of hexavalent chromium from aqueous solution. The peat was firstly characterized in terms of particle size and chemical composition (ash content, pH of the point of zero charge, FT-IR and thermal analysis). Next, the kinetic and equilibrium aspects of the adsorption of Cr(VI) by this adsorbent were studied. The kinetic data were satisfactorily fitted to a kinetic law of partial order in C equal to one. The specific adsorption rates are around 10(-4)s(-1), increasing as temperature does. A noticeable influence of diffusion on the global adsorption process has been demonstrated. Finally, the equilibrium isotherms were satisfactorily fitted to a previously proposed model. The adsorption capacity of Cr(VI) was similar to some other previously reported and the affinity of Cr(VI) towards the active sites of the adsorbent increases as temperature rises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号