首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
糖类不仅是组成生命体的基本物质之一,还是很多生理和病理过程中分子识别和细胞间相互作用的基础。糖的生物学功能可通过与蛋白质的相互作用来实现。这种可逆的特异性识别在信号传导、细胞粘附、增殖、分化、病菌感染和免疫应答等生命过程中具有重要意义。本文着重介绍了糖-蛋白质相互作用的种类和机理,综述了糖-蛋白质特异性识别作用在生物材料领域的应用进展,包括将糖类作为靶向分子修饰到纳米粒子或载体分子表面进行药物传递和基因转染,利用糖-蛋白质非共价作用力进行分子组装,以及制备糖基化表面用于调控蛋白粘附和细胞行为。由于糖类特殊的生物学性能和种类的多样性,基于糖-蛋白质特异性识别有望用于制备更加实用和智能的生物材料。  相似文献   

2.
林英武 《化学进展》2012,(4):589-597
蛋白质-蛋白质相互作用在生命过程中发挥至关重要的作用,特别是血红素类蛋白。细胞色素b5(Cyt b5)是血红素蛋白的一个典型代表,在生物体内通过多种蛋白质-蛋白质相互作用来执行其生物功能。目前所揭示的与Cyt b5相关的蛋白质相互作用包括:细胞色素b5-细胞色素b5还原酶,细胞色素b5-细胞色素P450,细胞色素b5-细胞色素c,细胞色素b5-肌红蛋白或血红蛋白,细胞色素b5-融合蛋白(谷胱甘肽S-转移酶GST和绿色荧光蛋白GFP)和细胞色素b5-转运蛋白(蔗糖转运蛋白SUT1和山梨醇转运蛋白SOT6)等。同一蛋白能与众多不同蛋白相互作用的事实,使我们认识到某些特定蛋白的生物学重要性。另一方面,研究同一蛋白与不同蛋白质间的相互作用将会进一步加深我们对蛋白质结构与功能关系的理解,以及指导新颖蛋白的理性设计与最终应用。  相似文献   

3.
生物液晶   总被引:2,自引:0,他引:2  
液晶是一种介于液相和固相之间的中间相,具有流动性和有序性,其性质表明它是一种极适于生命特征的状态。生命体中的蛋白质、核酸、多糖、脂类等都能够通过自组装而呈现液晶态,其液晶行为与细胞和组织功能的表达有关。本文介绍了液晶的分类、表征方法及生命体内的蛋白质、脱氧核糖核酸、多糖、脂类的液晶特性以及液晶态的生物材料与细胞的相互作用。  相似文献   

4.
N-糖链唾液酸连接异构体的质谱分析方法研究进展   总被引:1,自引:0,他引:1  
李月悦  彭叶  陆豪杰 《化学学报》2021,79(6):705-715
蛋白质在翻译过程中、翻译过程后会发生糖基化. 糖基化会以直接或间接的方式影响蛋白质的功能及其相互作用, 并与多种人类疾病有关, 其中, 唾液酸化N-糖链在一些重要的生理和病理过程中发挥关键作用. 已知的唾液酸与相邻单糖之间的连接方式包括α-2,3-、α-2,6-、α-2,8-、α-2,9-连接, 连接方式不同的唾液酸化N-糖链在细胞活动、生命体的生理和病理过程中的功能往往不同. 质谱技术是分析N-糖链的重要工具, 它能够快速和灵敏地检测N-糖链, 通过将色谱技术以及衍生化方法等与质谱联用可以实现对唾液酸化N-糖链及其连接异构体的分离和检测. 本文主要围绕α-2,3-和α-2,6-连接的唾液酸化N-糖链进行综述, 介绍它们的结构和在细胞活动及疾病中不同的功能, 并综述近年来基于质谱的唾液酸化N-糖链的连接异构体分析方法以及这些方法在生物医学领域的应用, 并对未来的生物医学研究提供新的思路和途径.  相似文献   

5.
糖和蛋白质的相互作用参与了很多重要的生命过程.研究糖和蛋白质的相互作用有多种手段,石英晶体微天平(QCM)是其中重要的一种.研究中常需要将蛋白质通过共价键连接在天平芯片的表面.但是,用于检测糖分子的蛋白质多为植物凝集素,它们的分子量大,表面可修饰位点少,通过共价键修饰在芯片表面的效率偏低.本文提出一种基于糖和苯硼酸之间动态共价键的新修饰方法,能够大幅度提高蛋白质在芯片表面的修饰效率.  相似文献   

6.
多效价树枝状糖苷配体的合成   总被引:4,自引:0,他引:4  
许多生命过程如细胞间的识别、信号传递等通常依赖于细胞表面的多个配体和受体的协同作用.多效价树枝状糖基配体的合成是研究生物体内蛋白质与糖类、糖类与糖类相互作用的重要途径.本文综述了多效价树枝状糖基配体这类合成配体的最新研究进展,包括以树枝状聚合物、环糊精、糖环、芳烃和大环等为框架的多效价树枝状糖基配体的合成.  相似文献   

7.
蛋白质是活细胞生物功能的主要载体.但单个蛋白质并不能发挥任何作用,只有与其他蛋白相互作用才能具有生物学功能.蛋白质相互作用在绝大多数细胞水平的生物过程,如DNA复制与转录、信号转导和细胞周期调控等中有着十分关键的作用.  相似文献   

8.
蛋白质相互作用的研究方法   总被引:1,自引:0,他引:1  
孙宇  贾凌云  任军 《分析化学》2007,35(5):760-766
生物体的生理功能主要由细胞中的蛋白质控制和调节。其中,多数蛋白质是通过与配体结合或是作为蛋白质复合物中的一部分参与细胞的代谢过程。因此,研究蛋白质间的相互作用是理解生命活动的基础。本文对现有蛋白质相互作用的研究方法和技术进行了评述。  相似文献   

9.
组织工程相关生物材料表面工程的研究进展   总被引:9,自引:0,他引:9  
生物材料用作人工细胞外基质(ECM ) 在组织工程中占据重要位置。本文在分析细胞2生物材料表面相互作用的基础上, 从生物材料中的水、材料表面的形态、材料表面的特异性识别及生物材料诱发愈合等方面探讨了生物材料的复杂性。生物材料对细胞的影响是一个双向、动态过程, 起着调节细胞增殖和凋亡平衡的作用。基于生物材料对细胞生长的影响, 本文提出了生物材料表面生物仿生化以提高细胞亲和力,糖链团簇、糖脂质及材料表面蛋白质修饰以提高细胞特异性识别, 材料表面的自组装修饰以改善表面形态等观点。  相似文献   

10.
蛋白质是生命功能的执行者,其功能的发挥受自身结构动态变化、与其他生物分子的相互作用及修饰等因素的调节。因此,对蛋白质及蛋白复合物结构的研究有助于揭示重要生命过程中的分子机理与机制。氢氘交换质谱(Hydrogen deuterium exchange mass spectrometry,HDX-MS)是研究蛋白质结构、动态变化和相互作用的强有力工具,也是传统生物物理手段的重要补充。该文综述了HDX-MS的基本原理、机制、实验方法和研究最新进展,并从蛋白质自身动态变化、蛋白质-小分子相互作用、蛋白质-蛋白质相互作用3个方面介绍了近年来HDX-MS在蛋白及蛋白复合物研究中的应用进展。  相似文献   

11.
Carbohydrates, as components of glycoproteins, glycolipids and proteoglycans, play an important biological role as recognition markers through carbohydrate-protein interactions. For the most part, biophysical and biochemical methods have been used to analyze these biomolecular interactions. In contrast, less attention has been given to the development of high-throughput procedures to elucidate carbohydrate-protein recognition events. Recently, carbohydrate arrays were developed and employed as a novel high-throughput analytic tool for monitoring carbohydrate-protein interactions. This technique has been used to profile protein binding and enzymatic activity. The results have shown that carbohydrate binding to the corresponding lectins is highly selective and that the relative binding affinities are well correlated with those obtained from solution-based assays. In addition, this effort demonstrated that carbohydrate arrays could be also utilized to identify and characterize novel carbohydrate-binding proteins or carbohydrate-processing enzymes. Finally, the results of this investigation showed that lectin-carbohydrate binding affinities could be quantitatively assessed by determining IC50 values for soluble carbohydrates with the carbohydrate arrays. The results of these studies suggest that carbohydrate arrays have the potential of playing an important role in basic researches, the diagnoses of diseases and drug discovery.  相似文献   

12.
Heparin oligosaccharides derived by nitrous acid depolymerization of heparin have been immobilized on amine-coated glass slides. The formation of a Schiff base creates heparin chips that are a suitable platform for the high-throughput analysis of carbohydrate-protein interactions.  相似文献   

13.
Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH, or low-pH solutions and after 1 month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new antiviral agents to prevent infectious disease.  相似文献   

14.
Here, we present the synthesis of two sialo-micelles to validate the significance of sialic acid orientation during specific carbohydrate-protein and carbohydrate-carbohydrate interactions. Our data clearly suggest that orientation of carboxylic acid and glycerol side chains of sialic acid moieties exert fine tuning of ligand-receptor interactions.  相似文献   

15.
Carbohydrate-protein interactions play important biological roles in living organisms. For the most part, biophysical and biochemical methods have been used for studying these biomolecular interactions. Less attention has been given to the development of high-throughput methods to elucidate recognition events between carbohydrates and proteins. In the current effort to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate microarrays by immobilizing maleimide-linked carbohydrates on thiol-derivatized glass slides and carried out lectin binding experiments by using these microarrays. The results showed that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. In addition, binding affinities of lectins to carbohydrates were also quantitatively analyzed by determining IC(50) values of soluble carbohydrates with the carbohydrate microarrays. To fabricate carbohydrate chips that contained more diverse carbohydrate probes, solution-phase parallel and enzymatic glycosylations were performed. Three model disaccharides were in parallel synthesized in solution-phase and used as carbohydrate probes for the fabrication of carbohydrate chips. Three enzymatic glycosylations on glass slides were consecutively performed to generate carbohydrate microarrays that contained the complex oligosaccharide, sialyl Le(x). Overall, these works demonstrated that carbohydrate chips could be efficiently prepared by covalent immobilization of maleimide-linked carbohydrates on the thiol-coated glass slides and applied for the high-throughput analyses of carbohydrate-protein interactions.  相似文献   

16.
In the post-genomic era, glycomics (the functional study of carbohydrates in living organisms) has come into the forefront of biological research because the interactions of glycoconjugates with proteins not only occur widely in biological processes of cells but also initiate infection of host cells by bacteria and viruses. Microarrays have been reportedly successful in carbohydrate-protein interaction as well as cellular surface glycan profiling. This review provides an overview of recent progress in the development of microarray-based techniques for glycomic studies. The fabrication, application and challenge/bottleneck of glycan/lectin microarrays have been summarized and discussed.  相似文献   

17.
Seo JH  Lee HY  Cha HJ 《The Analyst》2012,137(12):2860-2865
Antibody- or DNA-based electrochemical systems have been developed widely for several decades, while carbohydrate-based electrochemical systems have been rarely reported. Herein, we used an electrochemical detection system to understand the molecular relationships in carbohydrate-protein interactions that can provide useful information about biological processes in living organisms. This system was also helpful for the development of potent biomedical agents. Electrochemical detection was achieved through the observation of electrochemical response changes of ferrocyanide solution that resulted from the interaction of carbohydrate and protein using a modified GM1 pentasaccharide containing an anchoring thiol group that was directly immobilized on a gold electrode. As the concentration of the GM1 pentasaccharide increased, the current decreased gradually and saturated after 2 nM. We also found that the drop in current depended on the size of the carbohydrate (larger size of the carbohydrate denoted a higher slope of the current reduction), indicating that the current could be modulated by the molecular size of the carbohydrate as well as its concentration. This system was able to detect very low concentrations of carbohydrate (down to 20 fM), which highlighted the advantage of the electrochemical system. Interestingly, we found that a potential shift at the maximum current occurred upon interaction with cholera toxin proteins. By comparing results for different sizes of GM1 analogues, we surmise that the potential shift is closely associated with the specificity for the carbohydrate-protein interaction. Collectively, a carbohydrate-based electrochemical system can be leveraged for the facile and rapid analysis of carbohydrate-protein interactions.  相似文献   

18.
A straightforward method for fabricating a stable and covalent carbohydrate microarray based on boronate formation between the hydroxyl groups of carbohydrate and boronic acid (BA) on the glass surface was used to identify carbohydrate-protein interactions.  相似文献   

19.
Polyvalent carbohydrate-protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self-assemble to form non-covalent nanoparticles. These particles-not the individual molecules-function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non-covalent nanoparticles formed and on their biological evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号