首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
To prepare multipartite peptides with several functional cargoes including a cell-permeable sequence or transportant for intracellular delivery, tandem ligation of peptides is a convenient convergent approach with the fewest synthetic steps. It links three or four unprotected segments forming two or more regiospecific bonds consecutively without a deprotection step. This paper describes a tandem ligation strategy to prepare multipartite peptides with normal and branched architectures carrying a novel transportant peptide that is rich in arginine and proline to permit their cargoes to be translocated across membranes to affect their biological functions in cytoplasm. Our strategy consists of three ligation methods specific for amino terminal cysteine (Cys), serine/threonine (Ser/Thr), and N(alpha)-chloroacetylated amine to afford Xaa-Cys, Xaa-OPro (oxaproline) and Xaa-psiGly (pseudoglycine) at the ligation sites, respectively. Assembly of single-chain peptides from three different segments was achieved by the tandem Cys/OPro ligation to form two amide bonds, an Xaa-Cys and then an Xaa-OPro. Assembly of two- and three-chain peptides with branched architectures from four different segments was accomplished by tandem Cys/psiGly/OPro ligation. These NT-specific tandem ligation strategies were successful in generating cell-permeable multipartite peptides with one-, two-, and three-chain architectures, ranging in size from 52 to 75 residues and without the need of a protection or deprotection step. In addition, our results show that there is considerable flexibility in architectural design to obtain cell-permeable multipartite peptides containing a transportant sequence.  相似文献   

2.
The native chemical ligation reaction has been used extensively for the synthesis of the large polypeptides that correspond to folded proteins and domains. The efficiency of the synthesis of the target protein is highly dependent on the number of peptide segments in the synthesis. Assembly of proteins from multiple components requires repeated purification and lyophilization steps that give rise to considerable handling losses. In principle, performing the ligation reactions on a solid support would eliminate these inefficient steps and increase the yield of the protein assembly. A new strategy is described for the assembly of large polypeptides on a solid support that utilizes a highly stable safety catch acid-labile linker. This amide generating linker is compatible with a wide range of N-terminal protecting groups and ligation chemistries. The utility of the methodology is demonstrated by a three-segment synthesis of vMIP I, a chemokine that contains all 20 natural amino acids and has two disulfide bonds. The crude polypeptide product was recovered quantitatively from the solid support and purified in 20%-recovered yield. This strategy should facilitate the synthesis of large polypeptides and should find useful applications in the assembly of protein libraries.  相似文献   

3.
In the protein chemical synthesis via native chemical ligation (NCL) method with three peptide segments, the N-terminal cysteine residue of middle segment is generally protected by thiazolidine ring. In this paper, we show the novel method for thiazolidine ring opening using 2,2′-dipyridyl disulfide (DPDS). The N-terminal thiazolidine was converted into S-pyridylsulfenylated cysteine residue with DPDS under acidic conditions, and this N-terminally Cys peptide protected with disulfide was applicable to NCL reaction without purification and deprotection steps. DPDS treatment did not remove other Cys protecting groups generally used for regioselective disulfide bond formation reactions. These results indicate that this thiazolidine ring opening reaction is quite useful for the protein chemical synthesis with three-segment NCL strategy.  相似文献   

4.
缩合剂是指用于促成羧酸与胺或者醇直接缩合构建酰胺键或酯键的一类试剂的总称.由于酰胺和酯的重要性,缩合剂的开发成为了学术界与工业界广泛关注的一个重要研究方向.多肽合成就是α-氨基酸在缩合剂的作用下反复形成酰胺键的过程,因此,缩合剂在多肽合成中发挥着至关重要的作用.当前多肽合成所使用的试剂和技术大多是20世纪50~80年代发展起来的,这些试剂和技术的天生弊端逐渐显现出来.比如传统多肽缩合剂过度活化α-氨基酸而诱发的外消旋化和其它副反应导致的副产物成为药物多肽生产过程中一个极为关切的问题.另外固相多肽合成的低原子经济性给可持续发展带来了极大的挑战.这些问题只能依靠原始创新的颠覆性技术和全新的缩合方法来解决.我们课题组致力于通过发展新试剂和新反应来解决多肽与蛋白质化学合成领域的难题.本文系统介绍了我们发展的一种结构全新的炔酰胺类缩合试剂及其在酰胺、酯、大环内酯、多肽、硫代多肽合成中的应用研究进展.  相似文献   

5.
The chemical synthesis of complex glycoproteins is an ongoing challenge in protein chemistry. We have examined the synthesis of a single glycoform of monocyte chemotactic protein-3 (MCP-3), a CC-chemokine that consists of 76 amino acids and one N-glycosylation site. A three-segment native chemical ligation strategy was employed using unprotected peptides and glycopeptide. Importantly, the synthesis required the development of methods for the generation of sialylglycopeptide-alphathioesters. For the sialylglycopeptide-alphathioester segment, we examined and successfully implemented approaches using Fmoc-SPPS and Boc-SPPS. To avoid use of hydrogen fluoride, the Boc approach utilized minimal side chain protection and direct thiolysis of the resin bound peptide. Using these strategies, we successfully synthesized a glycoprotein having an intact and homogeneous complex-type sialyloligosaccharide.  相似文献   

6.
α‐Ketoacid‐hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments through the chemoselective formation of an amide bond. Currently, the most widely used variant employs a 5‐membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. In order to directly form amide‐linked threonine residues at the ligation site, we prepared a new 4‐membered cyclic hydroxylamine building block. This monomer was applied to the synthesis of wild‐type ubiquitin‐conjugating enzyme UbcH5a (146 residues) and Titin protein domain TI I27 (89 residues). Both the resulting UbcH5a and the variant with two homoserine residues showed identical activity to a recombinant variant in a ubiquitination assay.  相似文献   

7.
[reaction: see text] A novel strategy to generate thioester peptides compatible with Fmoc chemistry is presented. Peptide-C(alpha)oxy-(2-mercapto-1-carboxyamide)ethyl ester undergoes an O to S acyl shift during ligation and the newly formed thioester intermediate reacts with an N-terminal cysteine fragment generating a product with native amide bond at the ligation site.  相似文献   

8.
The influence of charge state on the peptide dissociation behavior in tandem mass spectrometry (MS/MS) is worthy of discussion. Comparative studies of singly- and doubly-protonated peptide molecules are performed to explore the effect and mechanism of charge state on peptide fragmentation. In view of the charge-directed cleavage of protonated peptides described in the mobile proton model, radiolytic oxidation was applied to change the charge distribution of peptides but retain the sequence. Experimental studies of collision energy-dependent fragmentation efficiencies coupled with quantum chemical calculations indicated that the cleavage of ARRA and its side-chain oxidation products with oxygen atoms added followed a trend that doubly-protonated peptides fragment more easily than singly-protonated forms, while the oxidation product with the guanidine group deleted showed the opposite trend. By analyzing the charge distribution around the amide bonds, we found that the relative charge ratios between C and N atoms (QC/QN) in the amide bonds provided a reasonable explanation for peptide fragmentation efficiencies. An increase of the QC/QN value of the amide bond means that a peptide fragments more easily, and vice versa. The results described in this paper provide an experimental and calculation strategy for predicting peptide fragmentation efficiency.  相似文献   

9.
Two main drawbacks seriously restrict the synthetic value of proteases as reagents in peptide fragment coupling: (i) native proteolytic activity and, thus, risk of undesired peptide cleavage; (ii) limited enzyme specificities restricting the amino acid residues between which a peptide bond can be formed. While the latter can be overcome by the use of substrate mimetics achieving peptide bond formation at nonspecific ligation sites, the risk of proteolytic cleavage still remains and hinders the wide acceptance of this powerful strategy for peptide coupling. This paper reports on the effect of the trypsin point mutant Asp189Glu on substrate mimetic-mediated reactions. The effect of this mutation on the steady-state hydrolysis of substrate mimetics of the 4-guanidinophenyl ester type and on trypsin-specific Lys- and Arg-containing peptides was investigated. The results were confirmed by enzymatic coupling reactions using substrate mimetics as the acyl donor and specific amino acid-containing peptides as the acyl acceptor. The competition assay verifies the predicted shift in substrate preference from Lys and Arg to the substrate mimetics and, thus, from cleavage to synthesis of peptide bonds. The combination of results obtained qualifies the trypsin mutant D189E as the first substrate mimetic-specific peptide ligase.  相似文献   

10.
The Staudinger ligation provides a means to form an amide bond between a phosphinothioester and azide. This reaction holds promise for the ligation of peptides en route to the total chemical synthesis of proteins. (Diphenylphosphino)methanethiol is the most efficacious of known reagents for mediating the Staudinger ligation of peptides, providing high (> 90%) isolated yields for equimolar couplings in which a glycine residue is at the nascent junction. Surprisingly, the yields are lower (< 50%) for non-glycyl couplings due to an aza-Wittig reaction that diverts the reaction toward a phosphonamide byproduct. Here, the partitioning of the reaction toward Staudinger ligation (and away from the aza-Wittig reaction) is shown to increase with increasing electron density on phosphorus. This electron density can be tuned either by installing functional groups on the phenyl substituents of (diphenylphosphino)methanethiol or by changing the polarity of the solvent. Installing p-methoxy groups and using a solvent of low polarity (such as toluene or dioxane) provide especially high (> 80%) isolated yields for the ligation of two non-glycyl residues. These conditions retain the high chemoselectivity of the reaction and do not lead to a substantial change in reaction rate. The traceless Staudinger ligation is now poised to enable the iterative ligation of peptides with little regard for their sequence, as well as the synthesis of amide bonds for other purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号