首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Layer-by-layer assembly of two palladium coordination-based multilayers on silicon and glass substrates is presented. The new assemblies consist of rigid-rod chromophores connected by terminal pyridine moieties to palladium centers. Both colloidal palladium and PdCl2(PhCN)2 were used in order to determine the effect of the metal complex precursor on multilayer structure and optical properties. The multilayers were formed by an iterative wet-chemical deposition process at room temperature in air on a siloxane-based template layer. Twelve consecutive deposition steps have been demonstrated resulting in structurally regular assemblies with an equal amount of chromophore and palladium added in each molecular bilayer. The optical intensity characteristics of the metal-organic films are clearly a function of the palladium precursor employed. The colloid-based system has a UV-vis absorption maximum an order of magnitude stronger than that of the PdCl2-based multilayer. The absorption maximum of the PdCl2-based film exhibits a significant red shift of 23 nm with the addition of 12 layers. Remarkably, the structure and physiochemical properties of the submicron scale PdCl2-based structures are determined by the configuration of the approximately 15 angstroms thick template layer. The refractive index of the PdCl2-based film was determined by spectroscopic ellipsometry. Well-defined three-dimensional structures, with a dimension of 5 microm, were obtained using photopatterned template monolayers. The properties and microstructure of the films were studied by UV-vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray reflectivity (XRR), scanning electron microscopy (SEM), and aqueous contact angle measurements (CA).  相似文献   

2.
Hamburg workshop on the "application of synchrotron radiation in chemistry"With grazing incidence small-angle X-ray scattering (GISAXS) the limitations of conventional small-angle X-ray scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISAXS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy (AFM), a large interval of length between molecular and mesoscopic scales is detectable with a surface-sensitive scattering method. While with AFM only surface topographies are accessible, with GISAXS the buried structure is also probed. Because a larger surface area is probed, GISAXS also has a much larger statistical significance compared to AFM. Due to the high demand on collimation, GISAXS experiments are based on synchrotron radiation. Nanostructures parallel and perpendicular to the sample surface observable in thin poly(styrene- block-isoprene) diblock copolymer films are presented as an example of the possibilities of GISAXS.  相似文献   

3.
The installation of large scale colloidal nanoparticle thin films is of great interest in sensor technology or data storage. Often, such devices are operated at elevated temperatures. In the present study, we investigate the effect of heat treatment on the structure of colloidal thin films of polystyrene (PS) nanoparticles in situ by using the combination of grazing incidence small-angle X-ray scattering (GISAXS) and optical ellipsometry. In addition, the samples are investigated with optical microscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). To install large scale coatings on silicon wafers, spin-coating of colloidal pure PS nanoparticles and carboxylated PS nanoparticles is used. Our results indicate that thermal annealing in the vicinity of the glass transition temperature T(g) of pure PS leads to a rapid loss in the ordering of the nanoparticles in spin-coated films. For carboxylated particles, this loss of order is shifted to a higher temperature, which can be useful for applications at elevated temperatures. Our model assumes a softening of the boundaries between the individual colloidal spheres, leading to strong changes in the nanostructure morphology. While the nanostructure changes drastically, the macroscopic morphology remains unaffected by annealing near T(g).  相似文献   

4.
In the interest of a more thorough understanding of the relationship between sample deposition technique and the quality of data obtained using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, details of the electrospray (ES) process of sample deposition are investigated using a number of techniques. Sample morphology was observed with scanning electron microscopy (SEM) and atomic force microscopy (AFM), while matrix-enhanced secondary ion mass spectrometry (MESIMS) monitored surface coverage. Electrospray deposition reduces the analyte segregation that can occur during traditional dried droplet deposition for MALDI. We attribute statistically significant improvements in the reproducibility of signal intensity and MALDI average molecular mass measurements to the ES sample deposition technique.  相似文献   

5.
Doucet FJ  Maguire L  Lead JR 《Talanta》2005,67(1):144-154
This research has evaluated the ability of cross-flow filtration (CFF) to perform correct size fractionation of natural aquatic colloids (materials from 1 nm to 1 μm in size) and particles (>1 μm) using scanning electron microscopy (SEM) combined with atomic force microscopy (AFM). SEM provided very clear images at high lateral resolution (ca. 2-5 nm), whereas AFM offered extremely low resolution limits (sub-nanometer) and was consequently most useful for studying very small material. Both SEM and AFM were consistent in demonstrating the presence of colloids smaller than 50 nm in all fractions including the retentates (i.e. the fractions retained by the CFF membrane), showing that CFF fractionation is not fully quantitative and not based on size alone. This finding suggests that previous studies that investigated trace element partitioning between dissolved, colloidal and particulate fractions using CFF may need to be re-visited as the importance of particles and large colloids may have been over-estimated. The observation that ultra-fine colloidal material strongly interacted with and completely coated a mica substrate to form a thin film has important potential implications for our understanding of the behaviour of trace elements in aquatic systems. The results suggest that clean, ‘pure’ surfaces are unlikely to exist in the natural environment. As surface binding of trace elements is of great importance, the nature of this sorbed layer may dominate trace element partitioning, rather than the nature of the bulk particle.  相似文献   

6.
纳米材料,包括尺寸为纳米量级的超细微粒?线?薄膜?量子阱和超晶格等引起了人们广泛的重视 [1,2] ?其中 , 半导体纳米微粒和由其构成的纳米固体结构开辟了材料科学研究的新领域?硫化镉 (CdS) 作为一种重要的Ⅱ - Ⅵ族无机半导体材料 , 具有独特的光电性质 , 在光电化学电池和多相光催化反应中都有广泛应用?近年来 , 已有大量关于合成 CdS 纳米结构的文献报导 [3~12] , 所采用的方法如反胶束法?单分子膜法?自组装法以及电化学沉积法等 , 其中非水电解与模板技术相结合的制备方法引起了人们高度的重视并且被广泛的采用?自从 Baranski 等在上…  相似文献   

7.
A series of light- and air-stable tris(phosphino)borato silver(I) complexes has been synthesized, structurally and spectroscopically characterized, and implemented in the growth of low resistivity metallic silver thin films by aerosol-assisted chemical vapor deposition (AACVD). Of the four complexes in the series, [RB(CH2PR'2) 3]AgPEt3 (R = Ph (1, 3), (n)Bu (2, 4); R' = Ph (1, 2), (i)Pr (3, 4), complexes 1 and 2 have been characterized by single-crystal X-ray diffraction. Complex 2 represents a significant improvement over previously available nonfluorinated Ag precursors, owing to ease of handling and efficient film deposition characteristics. Thermogravimetric analysis (TGA) shows that the thermolytic properties of these complexes can be significantly modified by altering the ligand structure. Polycrystalline cubic-phase Ag thin films were grown on glass, MgO(100), and 52100 steel substrates. Ag films of thicknesses 3 microm, grown at rates of 14-18 nm/min, exhibit low levels of extraneous element contamination by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that film growth proceeds primarily via an island growth (Volmer-Weber) mechanism.  相似文献   

8.
钴纳米线的模板制备与磁性   总被引:5,自引:0,他引:5  
利用二次阳极氧化法制备了多孔阳极氧化铝模板. 用直流电化学沉积方法成功地在模板孔道内制备了钴纳米线. 采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和振动样品磁强计(VSM)对样品的形貌、晶体结构和磁性进行了研究. 结果表明, 模板的孔径均匀, 孔道平直. 钴纳米线为多晶的六方密堆积结构. 钴纳米线具有明显的磁各向异性, 这主要起源于纳米线的形状各向异性.  相似文献   

9.
A novel photosensitive organic-inorganic composite film incorporating polyoxometalate, K7[SiW11O39Co(H3P2O7)] (SiW11CoPP), and diazoresin (DR) has been prepared via layer-by-layer (LBL) self-assembly. Under UV irradiation, followed the decomposition of diazonium in DR, the ionic bonds between the adjacent interfaces of the multilayer film convert to covalent bonds. The LBL multilayers were characterized by UV-vis spectroscopy, X-ray photoelectron spectra (XPS), atomic force microscopy (AFM), FTIR spectrum, cyclic voltammograms (CV), and electron spin resonance (ESR) measurements. UV spectroscopy shows that the deposition process is regular and highly reproducible from layer to layer. XPS spectra confirm the incorporation of DR and SiW(11)CoPP into the films. Atomic force microscopy image indicates that the film surface is uniform and smooth. Solvent etching experiment proves that the film has significant stability towards polar solvent. Electrochemical behavior of the multilayers is investigated.  相似文献   

10.
Metal nanowires (nanorods) have novel properties and potential applications in a wide field[1]. Many two-dimensional nanowire arrays of semiconductors and metals with different diameter and length have been made using template synthesis method[2]. The nanorod arrays of various metals (e.g., Cu, Ag,Au, Ni and Co) with different diameters from about 15 nm to 130 nm were fabricated by electrodeposition of the metals into the highly ordered nanochannel arrays in alumina film followed by partial removal of the film in phosphoric acid or sodium hydroxide. In the present work, surface-enhanced Raman spectroscopy (SERS), AFM and electrochemical methods have been used to characterize the metal nanorod (nanowire) arrays. Tapping mode AFM and SERS were performed on Nanoscope Ⅲa (Digital Instruments) and on confocal Raman microscopy (LabRam I,Dilor) respectively.  相似文献   

11.
Ultrathin films of ZnS were grown on Au (111) substrates using a novel, simple co-deposition method and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Cyclic voltammograms were used to determine approximate deposition potentials for co-deposition. XRD shows that the material growth is highly preferential with (111) orientation. Both AFM and XRD data indicate that the ZnS growth mechanism starts by the formation of rounded nanoparticles at the surface and then continues by lateral and vertical growth to form flat square crystallites of ZnS. UV-vis spectra taken for the ZnS thin films with various thicknesses, which is related to deposition time, shows that the band gap of the ZnS decreases as the film thickness increases.  相似文献   

12.
Morphology and structure of amorphous carbon films deposited with a pulsed arc source (LASER-ARC) have been studied using microscopical methods (SEM, TEM and AFM), electron diffraction and spectroscopical investigation (EELS). The parameters of the arc source and the deposition conditions (substrate temperature) influence morphology and structure of deposited amorphous carbon films. Especially the incorporation and growth of particles, embedded in the film have been investigated. By particle analysis using an optical microscope a majority of particles that is smaller than 500 nm has been determined. The morphology has been also demonstrated similar by AFM and TEM images. Their number and size of particles is strongly influenced by the deposition temperature. The structure of amorphous film is characterized by the EELS-spectra, but the particle structure was not detectable.  相似文献   

13.
Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox‐active polyelectrolyte–surfactant complex containing [Os(bpy)2Clpy]2+ (bpy=2,2′‐bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron‐transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing‐incidence small‐angle X‐ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz‐crystal microbalance with dissipation (QCM‐D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron‐transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five‐fold increase in current response to glucose compared with analogous supramolecular AuNP‐free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron‐transfer process.  相似文献   

14.
We investigated the capability of an ordered array of microspheres to act as a template for deposition and ordering of a subsequent layer of microspheres. An evaporation-based technique was used to deposit monolayers of large colloidal spheres. A novel technique for selective deposition of polyelectrolyte film was used to stabilize the arrays and optimize the bead-substrate interaction. The template behavior of face-centered cubic and body-centered cubic (bcc) microsphere arrays was studied by optical and scanning electron microscopy, and the packing geometry was found to have a dramatic effect on the arrangement of the subsequent layer. A geometrical interpretation of the experimental data explains why a bcc bead array is well suited to act as a template for an additional layer of microspheres.  相似文献   

15.
For the first time, grazing incidence small‐angle X‐ray scattering (GISAXS) analysis is used to characterize the morphology of TiO2 thin films grown by glancing angle physical vapor deposition (GLAD). According to cross‐section scanning electron microscopy (SEM) images, the films consist of near isotilted TiO2 columns of different length and width depending on film thickness. The obtained GISAXS patterns show a characteristic asymmetry with respect to the incidence plane, which is associated with the tilted geometry of the TiO2 columns. The patterns also show the existence of two populations of columns in these GLAD‐TiO2 films. The population of the thinnest columns appears related to the first grown layer and is common for all the films investigated, while the second population of columns grows with the thickness of the films and has been related to wider columns formed by shadowing at the expense of the initially formed columns.  相似文献   

16.
Protein thin films were prepared by the electrospray deposition (ESD) method from aqueous solutions of alpha-lactalbumin (alpha-LA) at different concentrations, and their surface morphologies and biological activities were characterized. The surface morphologies of the deposited films were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM images showed that the film surfaces had a fine porous structure, in which the pore diameters ranged from 40 to 600 nm. The biological activities of the cross-linked protein films were tested by the mechanochemical method. The response to calcium ion (Ca(2+)) demonstrated that the biological activity of the films was preserved. These results indicate that the ESD method is potentially useful for the fabrication of active protein thin films. The freestanding protein thin films prepared by ESD and postdeposition cross-linking provide novel options for protein-based biomaterials.  相似文献   

17.
Nanostructured titanium dioxide films have been reported to be used in many applications ranging from optics and solar energy devices to gas sensors. This work describes the synthesis of nanocrystalline titania films via an aqueous solution-gel method. The thin films are deposited by spin coating an aqueous citratoperoxo-Ti(IV)-precursor solution onto a silicon substrate. The influence of processing parameters like Ti4+ concentration and crystallization temperature on the phase formation, crystallite size and surface morphology of the films is studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, the effect of successive layer deposition on the film thickness of the resulting films is studied by means of cross sectional SEM. SEM and TEM micrographs clearly show that, after optimization of the process parameters, thin, smooth, dense nanocrystalline films are synthesized in a reproducible manner. The films are composed of 15–20 nm grains. At higher crystallization temperatures (600, 650°C) also larger particles (40–70 nm) are present. XRD data reveal that a phase pure anatase film is formed at 450°C. Crystallization temperatures equal to or higher than 600 °C however give rise to the formation of both the anatase and rutile crystalline phases. The smoothness of the films is proved by their very low rms surface roughness (≤1.1 nm) measured by AFM.  相似文献   

18.
A combination of microbeam grazing incidence small angle X-ray scattering (μGISAXS) and imaging ellipsometry is introduced as a new versatile tool for the characterization of nanostructures. μGISAXS provides a local lateral and depth-sensitive structural characterization, and imaging ellipsometry adds the position-sensitive determination of the three-dimensional morphology in terms of thickness, roughness, refractive index, and extinction coefficient. Together μGISAXS and imaging ellipsometry enable a complete characterization of structure and morphology. On the basis of an example of buildup of nanostructures from monodisperse colloidal polystyrene nanospheres on a rough solid support, the scope of this new combination is demonstrated. Roughness is introduced by a dewetting structure of a diblock copolymer film with one block being compatible with the colloidal nanoparticles and one block being incompatible. To demonstrate the potential for kinetic investigations, μGISAXS and imaging ellipsometry are applied to probe the drying process of an aqueous dispersion of nanospheres on such a type of rough substrate.  相似文献   

19.
改性聚苯乙烯微球的制备及其胶体晶体的组装   总被引:10,自引:0,他引:10  
采用甲基丙烯酸改性的无皂乳液聚合方法制备了尺寸为210 nm、含羧基的聚苯乙烯(PS)微球,用红外光谱、透射电子显微镜和粒度分析仪对其形状和结构进行分析,结果表明,经甲基丙烯酸改性后得到了表面为高密度电荷的单分散性PS微球.用垂直沉积法快速制备出在较大范围(大于1 cm2)呈现很好有序性的密排结构聚苯乙烯胶体晶体薄膜,其在590 nm波长处存在光子带隙.在电子显微镜下,观察到这种胶体晶体是面心立方(fcc)密排结构.  相似文献   

20.
预处理对丝素蛋白膜调控羟基磷灰石晶体生长的影响   总被引:1,自引:0,他引:1  
以丝素蛋白膜为基质, 在模拟体液中诱导羟基磷灰石晶体在其表面沉积和生长. 利用XRD, SEM, HRTEM, AFM和FTIR等表征手段研究了不同预处理方法对羟基磷灰石晶体的形成及其微观形貌的影响. 结果表明, 丝素膜可有效地诱导羟基磷灰石晶体在其表面沉积和生长; 较长的矿化时间有利于形成较多结晶度良好的HAP晶体; 而不同预处理方法对丝素膜的表面结构产生了不同影响, 进而调制在其表面沉积的羟基磷灰石的形貌和生长方向. 同时对丝素蛋白膜调控羟基磷灰石晶体生长的机制进行了必要的探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号