首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Point-of-care testing (POCT) devices have evolved to provide beneficial information about an individual's health whenever needed. Enzyme-based analytical devices have facilitated the highly selective detection of numerous biological molecules and ions. Enzymes are commonly used as the tags of recognition components, such as antibodies, to generate and amplify detection signals. Particularly, alkaline phosphatase (ALP) is one of the most widely used enzymes because of its high turnover number and low cost. Rapid response time and the incorporation of many sensors fabricated by micro/nano processing technologies are the advantages in using electrochemical devices as analytical tools. Therefore, ALP-based electrochemical devices have potential applications for more practical POCT platforms. This review summarizes recent research progress of ALP-based electrochemical devices for POCT. In addition to ALP substrates, the application of ALP-based immunosensors, aptasensors, and DNAzyme sensors are discussed.  相似文献   

3.
Point-of-care testing (POCT) in patients with ischemic heart disease is driven by the time-critical need for fast, specific, and accurate results to initiate therapy instantly. According to current guidelines, the results of the cardiac marker testing should be available to the physician within 30 min (“vein-to-brain” time) to initiate therapy within 60–90 min (“door-to-needle” time) after the patient has arrived at the emergency room or intensive care unit. This article reviews the current efforts to meet this goal (1) by implementing POCT of established biochemical markers such as cardiac troponins, creatine kinase MB, and myoglobin, in accelerated diagnosis and management workflow schemes, (2) by improving current POCT methods to obtain more accurate, more specific, and even faster tests through the integration of optical and electrochemical sensor technology, and (3) by identifying new markers for the very early and sensitive detection of myocardial ischemia and necrosis. Furthermore, the specific requirements for cardiac POCT in regard to analytical performance, comparability, and diagnostic sensitivity/specificity are discussed. For the future, the integration of new immunooptical and electrochemical chip technology might speed up diagnosis even further. However, every new development will have to meet the stringent method validation criteria set for corresponding central laboratory testing.  相似文献   

4.
The real-time, continuous monitoring of glucose/lactate, blood gases and electrolytes by implantable electrochemical sensors holds significant value for critically ill and diabetic patients. However, the wide-spread use of such devices has been seriously hampered by implant-initiated host responses (e. g., thrombus formation, inflammatory responses and bacterial infection) when sensors are implanted in blood or tissue. As a result, the accuracy and usable lifetime of in vivo sensors are often compromised. Nitric oxide (NO) is an endogenous gas molecule able to inhibit platelet adhesion/activation, inflammatory responses and bacterial growth. As such, the release of NO from the surfaces of in vivo sensors is a promising strategy for enhancement of their biocompatibility and analytical performance. In this review, the physiological functions of NO to improve the biocompatibility of implantable electrochemical sensors are introduced, followed by a brief analysis of chemical approaches to realize NO release from such devices. A detailed summary of the various types of NO releasing electrochemical sensors reported to date and their performance in benchtop and/or in vivo testing are also provided. Finally, the prospects of future developments to further advance NO releasing sensor technology for clinical use are discussed.  相似文献   

5.
In terms of testing, modern laboratory medicine can be divided into centralized testing in central laboratories and point-of-care testing (POCT). Centralized laboratory medicine offers high-quality results, as guaranteed by the use of quality management programs and the excellence of the staff. POCT is performed by clinical staff, and so such testing has moved back closer to the patient. POCT has the advantage of shortening the turnaround time, which potentially benefits the patient. However, the clinical laboratory testing expertise of clinical staff is limited. Consequently, when deciding which components of laboratory testing must be conducted in central laboratories and which components as POCT (in relation to quality and timeliness), it will be medical necessity, medical utility, technological capabilities and costs that will have to be ascertained. Provided adequate quality can be guaranteed, POCT is preferable, considering its timeliness, when testing vital parameters. It is also preferred when the central laboratory cannot guarantee the delivery of results of short turn-around-time (STAT) markers within 60 or (even better) 30 min. POCT should not replace centralized medical laboratory testing in general, but it should be used in cases where positive effects on patient care have been clearly demonstrated.  相似文献   

6.
Electrochemical glucose sensors have garnered considerable attention because of their attractive prospect in point-of-care testing (POCT). In this review, we firstly introduce the principles and challenges of electrochemical glucose sensors. Subsequently, we present an overview of the application of electrochemical glucose sensors and discuss their advantages and drawbacks. Wearable and implantable devices based on diverse target biofluid and platforms provide a considerable prospect of accurate and continuous monitoring. Thus, we believe that the future development direction of electrochemical glucose sensors is non-invasive, wearable devices and implantable devices with minimally invasive for continuous glucose monitoring in real time.  相似文献   

7.
8.
Craw P  Balachandran W 《Lab on a chip》2012,12(14):2469-2486
Nucleic Acid Testing (NAT) promises rapid, sensitive and specific diagnosis of infectious, inherited and genetic disease. The next generation of diagnostic devices will interrogate the genetic determinants of such conditions at the point-of-care, affording clinicians prompt reliable diagnosis from which to guide more effective treatment. The complex biochemical nature of clinical samples, the low abundance of nucleic acid targets in the majority of clinical samples and existing biosensor technology indicate that some form of nucleic acid amplification will be required to obtain clinically relevant sensitivities from the small samples used in point-of-care testing (POCT). This publication provides an overview and thorough review of existing technologies for nucleic acid amplification. The different methods are compared and their suitability for POCT adaptation are discussed. Current commercial products employing isothermal amplification strategies are also investigated. In conclusion we identify the factors impeding the integration of the methods discussed in fully automated, sample-to-answer POCT devices.  相似文献   

9.
Point-of-care testing (POCT) is becoming a hot research topic that allows rapid, on-site, and non-professional measurements outside the central laboratory. The micro-fabricated devices prepared by various micro-machining technologies have shown the advantages of low reagent consumption, high-throughput samples, and wearability. This review presents the recent progress of electrochemical biosensors based on various micro-fabricated devices for POCT and the corresponding electrochemical techniques. Signal amplification strategies based on enzyme and nanotechnology are also illustrated for the more sensitive POCT applications of these micro-fabricated devices. Consequently, the trends and challenges of electrochemical biosensors based on micro-fabricated devices in POCT diagnosis are discussed.  相似文献   

10.
Colorimetric sensing strategies as a powerful point-of-care testing(POCT) tool have attracted significant interest in various chem/biosensing applications.Taking the excellent bare-eye-detectable signaling feature,nanozymes-based colorimetric sensors enable more potential applications and have been a new forefront in the colorimetric POCT analysis toward different target analytes.However,the low catalytic activity of nanozymes in most cases limits their practical application.Recent efforts demonstrate that the aggregation-induced nanozymes provide a general means to modulate nanozymes activity and enhance colorimetric sensing performances of some nanozymes-based colorimetric sensors.But there are few reports are explored to discuss and review such aggregation-induced nanozymes and their colorimetric sensing applications.To highlight the advances and progress in aggregation-induced nanozymes based colorimetric assays,we herein summary the fundamentals,classify and applications of this newlydeveloping field,focusing on the aggregation-induced activity enhancement of nanozymes(AIAEnanozymes) with a significant "signal-on" feature and aggregation-induced activity inhibition of nanozymes(AIAI-nanozymes) with a dramatical "signal-of" characteristics.Finally,we also propose the current challenges and the future prospects on both AIAE-nanozymes and AIAI-nanozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号