首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A novel C60 solar cell acceptor (BTOQC, benzo[2,1,3]-thiadiazole-o-quinodimethane-C60 bisadducts) based on benzo[2,1,3]thiadiazole has been synthesized as model to study how the thiadiazole group will affect the device performance in bulk heterojunction organic photovoltaics (BHJ-OPV) with poly(3-hexylthiophene) (P3HT) as donor. The optoelectronic, electrochemistry, and photovoltaic properties of the novel bisadduct BTOQC have been fully investigated. The best device performance of this fullerene derivative in our research was obtained as 2.50% with a high Voc of 0.74 V.  相似文献   

2.
A study of the design of thiophene-substituted fulleropyrrolidine derivatives as the acceptor in photovoltaic cells has been carried out using poly(3-hexylthiophene) (P3HT) as the model donor polymer. It was found that five types of thiophene-substituted fulleropyrrolidine worked as a good acceptor partner with P3HT, and the highest power conversion efficiency (PCE) was obtained for 1-(2-(2-methoxyethoxy)ethyl)-2-(2-thiophen-2-yl)fulleropyrrolidine (2.99%); this is superior to that of the P3HT polymer including methyl [C60]-PCBM under the same experimental conditions.  相似文献   

3.
Copper indium selenide (CuInSe2) nanocrystals with trigonal pyramidal shape are synthesized by a two-step process for photovoltaic applications. Structural, morphological and optical properties of the as-synthesized CuInSe2 nanocrystals are characterized by using powder X-ray diffraction analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis absorption spectroscopy. Results indicate that the monodispersed nanocrystals show a single phase polycrystalline and the size of the trigonal pyramid is in the range of 10-12 nm, and the average composition ratio of the Cu/In/Se is measured to be 1.0:1.2:2.0. It is also investigated that the size and morphology of the CuInSe2 nanocrystals can be tuned through a manipulation of the reaction time. Under an illumination of the simulated AM 1.5, the as-fabricated hybrid solar cell based on the P3HT/CuInSe2 nanocrystals blends exhibits a promising open circuit voltage (Voc) of 0.42 V and its energy conversion efficiency is as 3 times as that of the solar cell fabricated by only the naked P3HT polymer.  相似文献   

4.
Novel phenylene-bridged zinc bisporphyrins (1-4), fulleropyrrolidines (C60-m, C60-h) and their N-oxides (C60-mo, C60-ho) were synthesized. The fluorescence quenching processes of bisporphyrins in toluene solution by fulleropyrrolidines and their N-oxides were investigated by steady-state fluorescence spectra. The fluorescence quenching constants proved that the fluorescence quenching ability was decreased as reduction of the pyrrolidine functional groups of fullerene surface: C60-h〉C60-m〉C60, and the fluorescence quenching ability was increased about 1.3-7.4 times by utilizing fulleropyrrolidine N-oxides (C60-mo, C60-ho) compared to fulleropyrrolidine compounds (C60-m, C60-h). The results revealed photoinduced electron transfer (PET) efficiency between bispor-phyrin and fullerene derivatives could be tunable by change of functional groups on fullerene surface.  相似文献   

5.
The synthesis of several C60 derivatives containing a 6-(β-d-glycopyranosylamino)pyrimidin-4-one unit and a C60-uridine conjugate is described. The fullerene derivatives bearing a 4-(β-d-glycopyranosylamino)pyrimidin-4-one moiety were synthesised by 1,3-dipolar cycloaddition reactions of C60 with azomethine ylides generated in situ from the corresponding 5-formylpyrimidin-4-one derivatives and N-methylglycine. The synthesis of the C60-uridine conjugate involved the selective protection of the 2′- and 3′-hydroxyl groups of uridine, esterification, cyclopropanation of C60 and, finally, the deprotection of the hydroxyl groups. One of the fullerene-glycopyranosylaminopyrimidin-4-one conjugates was characterised by single-crystal X-ray crystallography. Differentiation between pairs of diastereoisomers, for several fullerene derivatives, was achieved through the study of their gas-phase fragmentations.  相似文献   

6.
In this article, we present the research on the influence of the composition of thin films of a blend of poly (3-hexylthiophene −2,5-diyl) - P3HT with fullerene derivatives [6,6]-phenyl-C71-butyric acid methyl ester – PC70BM and [6,6]-phenyl-C61-butyric acid methyl ester – PC60BM on their thermal transitions. The influence of molar mass (Mw) of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and PCBM (PC60BM – Mw = 911 g/mol and PC70BM – Mw = 1031 g/mol) is examined in details. The article presents significantly expanded research compared to our previous work on thermal transitions in thin films of blend P3HT (Mw = 65.2 kDa) with PC60BM. For this reason, we also compare current results with previous ones. Here, we present for the first time a phase diagram of thin films of the P3HT(Mw = 65.2 kDa):PC70BM blend using variable-temperature ellipsometry. Our research reveals the presence of characteristic temperatures of pure phases in thin films of P3HT: PCBM blends. It turns out that the cold crystallization temperature of the P3HT phase in P3HT(Mw = 65.2 kDa):PC70BM blend films is lower than corresponding temperature in P3HT(Mw = 65.2 kDa):PC60BM blend films. At the same time, the cold crystallization temperature of the PC70BM phase behaves inversely. We demonstrate also that variable-temperature spectroscopic ellipsometry is a very sensitive technique for studying thermal transitions in these thin films. In addition, we show that the entire phase diagram can be determined based on the raw ellipsometric data analysis, e.g. using a delta angle at wavelength λ = 280 nm.  相似文献   

7.
Organic dyes that consist of a [2.2]paracyclophane moiety between a triphenylamine donor group and a cyanoacrylic acid acceptor group have exhibited considerably high values of open-circuit voltage (Voc) in the range of 0.69–0.74 V. In an experiment that involved using an ion liquid electrolyte (E2 electrolyte), the values of Voc were increased to 0.03–0.04 V because of a decrease in the concentration of LiI. A typical device demonstrated a maximal incident photon-to-current conversion efficiency (IPCE) of 60% in the region of 350–475 nm, a short-circuit photo current density (Jsc) of 8.80 mA cm−2, an open-circuit photovoltage (Voc) of 0.74 V, and a fill factor (FF) of 0.65, corresponding to an overall conversion efficiency of 4.24% of CPG2b. The photophysical properties were analyzed using a time-dependent density functional theory (TDDFT) model with the M062X functional.  相似文献   

8.
Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion of 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5) can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E 1/2(0/–) values of 2 and C60, –0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E 1/2(0/–) of PCBM is –0.09 V). Time-resolved microwave conductivity charge-carrier yield × mobility values for organic photovoltaic active-layer-type blends of 2 and poly-3-hexylthiophene (P3HT) were comparable to those for equimolar blends of PCBM and P3HT. The structure of solvent-free crystals of 2 was determined by single-crystal X-ray diffraction. The number of nearest-neighbor fullerene–fullerene interactions with centroid···centroid (⊙···⊙) distances of ≤10.34 Å is significantly greater, and the average ⊙···⊙ distance is shorter, for 2 (10 nearest neighbors; ave. ⊙···⊙ distance = 10.09 Å) than for solvent-free crystals of PCBM (7 nearest neighbors; ave. ⊙···⊙ distance = 10.17 Å). Finally, the thermal stability of 2 was found to be far greater than that of PCBM.  相似文献   

9.
Three novel low-bandgap (LGB) conjugated polythiophenes (PThBTDmCzn) incorporating separate and content-tunable benzothiadiazole and carbazole moieties have been designed and synthesized for application in bulk heterojunction polymer solar cells (PSCs). The absorption spectral, thermal, electrochemical and photovoltaic properties of the random copolymers were investigated. Broad absorption from a single polymer covering the visible region from 300 to 800 nm was observed, which was ideal for highly efficient harvesting of the solar spectrum. DSC analysis showed that the polymers readily crystallized, indicating highly ordered intermolecular packing, which is beneficial for efficient charge-carrier transport. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open-circuit voltage while blending them with fullerene derivatives as electron acceptors. Polymer solar cells using 1:1 or 1:2 wt/wt polymer: PC61BM (methanofullerene [6,6-phenyl C61-butyric acid methyl ester] blends as the photoactive layers were fabricated and characterized. The preliminary investigation on the photovoltaic device of the PThBTDmCzn polymers gave similar power conversion efficiency of 1.1-1.2% with Voc of 0.64-0.68 V under simulated solar light AM 1.5 G (100 mW/cm2).  相似文献   

10.
Two novel trialkylsilyl-containing organic sensitizers (JK-53 and JK-54) have been designed and synthesized. Nanocrystalline TiO2–silica-based dye-sensitized solar cells (DSSCs) were fabricated using these dyes. Under standard global AM 1.5 solar conditions, the JK-53-sensitized cell gave a short-circuit photocurrent density (Jsc) of 6.37 mA cm?2, an open-circuit voltage (Voc) of 0.70 V, and a fill factor of 0.74. These values correspond to an overall conversion efficiency (η) of 3.31%. By comparison, the JK-54-sensitized cell resulted in a Jsc of 7.52 mA cm?2, a Voc of 0.71 V, and a fill factor of 0.75. These values give an overall conversion efficiency of 4.01%.  相似文献   

11.
BiOCl and BiOBr nanodiscs (100–150 nm in diameter, 15–25 nm in thickness) are prepared via water-based nucleation and purified by a phase-transfer reaction, including oleylamine-induced transfer of the as-prepared nanodiscs from the polar water phase to the non-polar toluene phase. The oleylamine-capping is then removed by hydrazine treatment, and the BiOCl/BiOBr nanodiscs are redispersed in 2-propanol. The as-prepared nanodiscs are finally deposited as a porous, p-type semiconductor layer to obtain dye-sensitized solar cells (DSSCs). Herein, coumarin 343 is applied as sensitizer together with BiOCl as p-type semiconductor and a KI–I2 electrolyte. In addition, eosin Y is applied as sensitizer together with BiOBr as p-type semiconductor and a [C4MPyr]2[Br20] polybromide electrolyte (C4MPyr: N-butyl-N-methylpyrrolidinium). Such polybromide electrolyte is firstly applied in a DSSC and allows for a higher redox potential. Both here established p-DSSCs show the characteristic features and function of a solar cell (BiOCl/coumarin 343/KI–I2: Voc = 120 mV, Jsc = 57 μA cm−2, FF = 40.6%, η = 0.003; BiOBr/eosin Y/[C4MPyr]2[Br20]: Voc = 78 mV, Jsc = 3.1 μA cm−2, FF = 28.6%, η = 0.0005) as a result of this conceptual study.  相似文献   

12.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

13.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

14.
《化学:亚洲杂志》2017,12(10):1075-1086
A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=n ‐decyl, n ‐octadecyl, benzyl, and n ‐butyl; compounds 1 a – d , respectively), as demonstrated by NMR spectroscopy and X‐ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one‐electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to abstraction of an electron from the nitrogen lone‐electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a – d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron‐transfer reorganization energy relative to pristine C60. Neat thin films of the n ‐decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10−3 cm2 V−1 s−1, which was comparable to phenyl‐C61‐butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as‐cast poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/ 1 devices relative to the as‐cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge‐transport properties — both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double‐caged molecules. Test P3HT/ 1 OSCs demonstrated power‐conversion efficiencies up to 2.6 % ( 1 a ). Surprisingly low optimal content of double‐caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity.  相似文献   

15.
The preparation, characterization and photophysical properties of six new stable [6,6]-closed fullerene cycloadducts bearing five-membered heterocycles are described. The modified [60]fullerenes are obtained by a simple and rapid synthesis via a Bingel-type reaction with tetrazole and oxadiazole malonate derivatives. The photophysical kinetics of these new fullerene derivatives in toluene solution under ultraviolet illumination (375 nm, UVA) are studied by electron paramagnetic resonance and free-radical spin-trapping using α-phenyl-N-tert-butyl nitrone as a spin-trap. The results are compared with pure [60]fullerene and [6,6]-phenyl C61 butyric acid methyl ester (C60-PCBM). It is concluded that for all six new compounds as well as pure [60]fullerene and PCBM both superoxide and singlet oxygen are produced in the first stages of UVA illumination following the type I and II mechanisms, respectively. In all cases singlet oxygen is produced as the primary dominant species; however, the type I mechanism always occurs in parallel with type II. In the end, the superoxide is self-dismuted into hydroxyl radicals, thus yielding PBN-OH spin adducts (g = 2.007 and ahf (14N) = 1.54 mT). The kinetic reaction constants and their efficiencies in the production of reactive oxygen species at 375 nm and per mW of absorbed power are determined. The experimental results are consistent with an autocatalytic reaction model in which the system evolutes under UVA illumination, with superoxide catalyzing the conversion of singlet oxygen into more superoxide.  相似文献   

16.
Photolysis of (C59N)2 solutions in the presence of neutral π-donors, such as arenes and electron-rich alkenes leads to a series of novel aza[60]fullerene monoadducts. The key step of the reaction involves a photoinduced electron transfer from the donor molecule to the iminium cation of aza[60]fullerene, followed by radical coupling of the resulting aza[60]fullerenyl radical with an intermediate stabilized radical derived from the substrate. This type of reactivity has been proven efficient with arenes having oxidation potential higher than about 1.5 V. Simple olefins, such as tri- and tetra-methylethylene, as well as cyclohexene, can also participate in this kind of photoinduced electron transfer-initiated reaction with C59N+, affording the corresponding aza[60]fullerene derivatives. In the case of 2-methoxyprop-1-ene, 2,4-hexadiene, and β,β-dimethylstyrene, [2+2] cycloaddition reactions with the aza[60]fullerene carbon shell dominate, leading to a mixture of unidentified multiadducts.  相似文献   

17.
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as donor and indene‐C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre‐thermal annealing temperature, active layer thickness, and the P3HT:IC70BA weight ratios. For devices with a 188‐nm‐thick active layer of P3HT:IC70BA (1:1, w:w) blend film and pre‐thermal annealing at 150°C for 10 min, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.  相似文献   

18.
Fulleropyrrolidine containing a sterically hindered phenolic fragment was synthesized by the reaction of fullerene C60 with N-methylglycine and 3,5-di-tert-butyl-4-hydroxybenzaldehyde. Electrochemical reduction of fulleropyrrolidine-containing phenol 1 and the corresponding phenoxide ion proceeded stepwise to form stable radical anions, dianions, and trianions. The radical anion (g = 2.0000) and the phenoxyl radical (g = 2.0045) obtained by chemical oxidation with lead dioxide were identified by ESR spectroscopy. The electron affinity of fulleropyrrolidine was estimated at 2.58 eV. For the phenoxide ion, the electrochemical gap was determined (E = E I oxE I red = 0.47 V). The heats of formation and the energies of the frontier orbitals of fulleropyrrolidine and its transformation products were evaluated by the PM3 method.  相似文献   

19.
Organic dyes that consist of an anthracene moiety between a triphenylamine donor group and a cyanoacrylic acid acceptor group displayed remarkable solar-to-energy conversion efficiency in dye-sensitized solar cells. The planar geometry of anthracene and its bulky substituents helped the dyes to form a high quality monolayer on the surface of TiO2. A typical device made with the dye AN-Bu displayed a maximal photon-to-current conversion efficiency (IPCE) 65% in the region of 350–510 nm, a short-circuit photocurrent density (Jsc) 12.78 mA cm−2, an open-circuit photovoltage (Voc) 0.73 V, and a fill factor (FF) 0.67, corresponding to an overall conversion efficiency 6.23%. In an experiment of using deoxycholic acid (DCA) as a co-absorbent, the values of Voc stayed in a similar range, yet the values of Jsc were reduced in ca. 11% due to a decrease of loading amounts. This result indicated that the quality of the dye films cannot be further improved by the adding of DCA. The photophysical properties were analyzed with the aid of a time-dependent density functional theory (TDDFT) model with the B3LYP functional.  相似文献   

20.
Lu Zhang 《Tetrahedron》2010,66(18):3318-16
Four triarylamine derivatives (XS6-9) containing N,N-dimethylaryl amine units as secondary electron-donating groups are designed and synthesized. These dyes were applied into nanocrystalline TiO2 dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 93%, with a short-circuit photocurrent density (Jsc) 10.8 mA cm−2, an open-circuit photovoltage (Voc) 690 mV, and fill factor (FF) 0.61, which corresponds to an overall conversion efficiency of 4.54%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号