首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 656 毫秒
1.
以改性胺1618固化剂为囊芯、脲醛树脂为壁材单体,采用界面聚合技术,成功制备了一种新型聚脲改性胺微胶囊固化剂。通过正交设计试验,考察了芯壁质量比、乳化剂种类和质量分数及搅拌速率对微胶囊包覆率、粒径大小及分布情况的影响,并确定了最佳制备工艺条件。采用马尔文激光粒度仪、扫描电镜对微胶囊粒径大小、分布情况及表面形貌进行表征,采用热重分析仪及傅里叶变换红外光谱对其化学结构进行表征,通过拉伸试验对自修复材料的断裂力学性能进行研究。结果表明,该微胶囊含有固化剂芯材,其热稳定温度为198°C,当芯壁质量比为0.7∶1、乳化剂为阿拉伯胶、乳化剂质量分数为1.5%、搅拌速率为800r/min时,所制备的微胶囊包覆率达到79.8%,平均粒径为207.5nm,呈规则的球形,分散性及表面致密性好。当基体材料中加入质量分数为1%的微胶囊后,拉伸强度提高64%,弹性模量提高287%。  相似文献   

2.
三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征   总被引:4,自引:0,他引:4  
针对环氧树脂基材料的自修复,选取四氢邻苯二甲酸二缩水甘油酯作为芯材,采用三聚氰胺-甲醛树脂为壁材,对其进行微胶囊化包裹.结果表明,制得的具有单囊结构的环氧树脂微胶囊,胶囊粒径较小(约6.7μm)、囊壁较薄(约0.2μm)、芯含量较高(83.2 wt%),囊壁内、外表面光滑致密,胶囊具有良好的密闭性和耐热性;在微胶囊化过程中,三聚氰胺-甲醛树脂的缩聚反应动力学起关键作用,芯材没有参与囊壁形成的交联反应;包裹后的芯材活性保持不变,胶囊被复合到材料过程中囊芯活性也保持不变;胶囊的强度较高,能承受与基体材料复合过程中的外力作用,且与基体材料间粘结良好,在裂纹形成过程中能够随基体同时开裂.  相似文献   

3.
以高效氯氰菊酯为芯材,乙基纤维素为壁材,采用溶剂蒸发法制备了微胶囊,并对其理化性能进行表征,通过单因素实验研究了工艺参数对微胶囊外观形貌、粒径大小及分布、包封率、载药量和缓释性能的影响.结果表明,乳化剂种类和剪切时间可以显著影响微胶囊的外观形貌;随着乳化剂用量增大,微胶囊粒径减小,分布变窄,当Tween-80用量从4%增加至8%时,微胶囊平均粒径从59.9μm减少到29.8μm,跨距也从1.21减少到0.72.随着芯壁比(质量比)减小,微胶囊粒径和包封率均逐渐增大,载药量逐渐减小,当芯壁比为1:1.75时,包封率可以达到70%以上.微胶囊释放动力学模型符合Ritger-Peppas模型(lg Q=lgk+nlgt);平均粒径相近而载药量不同时,初期载药量最小的样品释放速率慢,累积释放率低;载药量相近而平均粒径不同时,粒径大的样品释放速率低,累积释放率也低.  相似文献   

4.
细粒径石蜡微胶囊相变材料的制备与性能   总被引:3,自引:0,他引:3  
采用阳离子和非离子复配乳化剂,通过原位聚合制备以丙烯酸酯为壁材,石蜡为芯材的细粒径微胶囊相变材料.采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、差示扫描量热(DSC)、热重(TG)及激光粒度仪分析表征了微胶囊相变材料的化学结构、表面形貌和热性能.结果表明,乳化剂的种类和壁材单体的配比对微胶囊性能有重要的影响.当采用阳离子和非离子复配乳化剂,壁材中单体甲基丙烯酸甲酯(MMA)与丙烯酸(AA)的质量比为9∶1时,微胶囊相变材料呈球形且表面光滑紧凑,尺寸仅为0.2~0.35μm,具有良好的储热能力,相变潜热高达169 J/g;微胶囊中壁材对石蜡芯材的分解具有明显热阻滞作用,分解温度比纯石蜡提高了150℃.  相似文献   

5.
采用界面聚合法,以薄荷素油为芯材,以异佛尔酮二异氰酸酯为壁材单体,在催化剂四甲基乙二胺作用下和水反应形成聚脲外壳,制备出了薄荷素油微胶囊.通过扫描电镜、激光粒度分析仪、傅里叶红外光谱仪及热重分析仪分别对香精微胶囊的表面形貌、粒径分布、单体反应情况和热稳定性进行了分析表征.通过紫外可见分光光度计对香精微胶囊包覆率进行了测定.并分析了均质化速率和微胶囊平均粒径的关系以及不同乳化剂种类和芯壁比条件下微胶囊的形貌特征.结果表明,微胶囊平均粒径随均质化速率的增大而减小,下降到1μm左右时趋于平稳,当乳化剂采用聚乙烯醇且芯壁比为4∶1时,微胶囊形貌最佳,为规整球形.最终测得微胶囊芯材包覆率为84.09 wt%,粉末状微胶囊样品含油率为72.64 wt%,并且微胶囊芯材具有良好的热稳定性.  相似文献   

6.
采用界面自由基聚合的方法,制备了以聚二甲基丙烯酸乙二醇酯(PEGDMA)为壁材,薄荷素油(DPO)与石蜡或者三辛癸酸甘油酯(GTCC)的混合物为芯材的微胶囊.微胶囊壁材是二甲基丙烯酸乙二醇酯(EGDMA)单体通过界面自由基聚合形成的高聚物PEGDMA.提出了该界面自由基聚合形成PEGDMA的机理过程.利用光学显微镜和扫描电镜探究了乳化剂类型、芯材组成和固化温度对微胶囊形貌的影响.用傅里叶红外光谱对微胶囊的化学结构进行了表征.利用紫外分光光度计测出了未被微胶囊包埋的芯材占总芯材的百分比(free oil).并用热重分析仪分析了微胶囊的热稳定性能,讨论了固化时间对微胶囊热性能的影响.结果表明,采用阿拉伯树胶为乳化剂,芯材组成为质量比M_(DPO)/M_(GTCC)=1∶1,在60℃下固化1 h,制备出的微胶囊为饱满的球形状,表面光滑.同时测得该体系中芯材的free oil为26.5 wt%.PEGDMA微胶囊在60℃固化温度下反应3 h,具有很好热稳定性,且固化温度升高能提高微胶囊的热稳定性.所制备的微胶囊无毒,在个人护理品和医药领域具有广泛的应用前景.  相似文献   

7.
利用磷酸化改性木质素/二氧化硅复合纳米颗粒(PAL/SiO2)作为壁材包埋活性组分异佛尔酮二异氰酸酯(IPDI)制备微胶囊(PAL/SiO2-IPDI). 通过加入少量反应活性更高的聚合多甲基多二异氰酸酯(PMDI), 与水反应形成聚脲, 以增加微胶囊的壁厚. 采用光学显微镜、 扫描电子显微镜(SEM)和激光粒度分析仪(DLS)研究了PAL/SiO2复合纳米粒子掺杂量, 水油比和剪切速率对微胶囊表面形貌、 粒径和壁厚的影响. 结果表明, 所制备的微胶囊呈现规整球形, 壁厚为2.36~3.50 μm, 平均粒径为40.3~201.5 μm. IPDI作为芯材包埋在微胶囊中, 芯材含量约为82.8%. 将制备的PAL/SiO2-IPDI微胶囊添加到环氧树脂中得到自愈合环氧树脂涂层. 其在高盐浓度溶液中的抗侵蚀测试结果显示, 添加质量分数4%的PAL/SiO2-IPDI微胶囊的环氧树脂涂层在划破后能够快速愈合, 显著降低基底的腐蚀电流和腐蚀速率. 纳米压痕实验表明, 环氧涂层的硬度为249.99 MPa, 而添加PAL/SiO2-IPDI微胶囊后硬度增加到302.98 MPa, 弹性模量也有提高.  相似文献   

8.
采用原位聚合法制备了以脲醛树脂为壁材、过氧化苯甲酰为芯材的厌氧胶固化引发剂微胶囊。研究了乳化剂聚丙烯酸钠、十二烷基苯磺酸钠、阿拉伯树胶、苯乙烯-马来酸酐共聚物的单独使用及阿拉伯树胶与苯乙烯-马来酸酐共聚物的复配组合和其它工艺条件对微胶囊制备的影响;运用FT-IR、TG和SEM等测试技术对微胶囊进行了表征。结果表明,以苯乙烯-马来酸酐共聚物和阿拉伯树胶作为复合乳化剂,反应终点pH值为1.5左右,反应温度70℃,反应时间4 h,搅拌速率1 000 r/m in,可制得分散适中、形貌较好、粒径约为100μm的微胶囊。以实验制备的微胶囊配制成可预涂厌氧胶胶液,性能可以达到国外公司同类产品的技术指标。  相似文献   

9.
丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征   总被引:1,自引:0,他引:1  
以二丙烯酸1,4-丁二醇酯为交联剂, 成功制备了甲基丙烯酸甲酯-甲基丙烯酸共聚物为壁材, 正十八烷为囊芯的相变材料微胶囊. 采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TG)分别考察了单体与芯材投料比、单体浓度和交联剂的含量对微胶囊形貌、相变热性能、热稳定性能的影响. 实验结果表明: 随着单体与芯材投料比或单体浓度的增加, 微胶囊表面均变得致密, 壁厚增加; 随着交联剂含量的增加, 微胶囊的表面变得更加致密光滑, 热稳定性显著增强; 随着单体与芯材投料比的增大, 微胶囊热焓值减小, 被包裹的囊芯含量减少.  相似文献   

10.
大豆分离蛋白-十二烷基硫酸钠微胶囊的制备与表征   总被引:1,自引:0,他引:1  
朱晓丽  刘维鹏  顾相伶  孔祥正 《化学学报》2009,67(13):1497-1502
以大豆分离蛋白(SPI)和十二烷基硫酸钠(SDS)为壁材, 以十六烷为芯材, 通过复凝聚法制备了微胶囊. 首先确定了SPI和SDS发生复凝聚的适宜pH、SPI/SDS配比、壁材浓度等. 在确定的实验条件下进行复凝聚, 凝聚物产率可达85%. 改变搅拌转速和芯壁比, 考察它们对微胶囊性能的影响. 用光学显微镜观察了微胶囊形貌. 用气相色谱测定了微胶囊的载药量和包覆率. 芯壁比为2、搅拌转速为400 r/min时所制备微胶囊的载药量可达61%. 随着芯壁比的增大, 微胶囊粒径及载药量都逐渐增大.  相似文献   

11.
以熔点在58~60℃的半精炼石蜡作为相变芯材,与单体、分散剂水溶液形成核壳结构分散液,室温下自由基聚合制备甲基丙烯酸甲酯-丙烯酸的共聚物(P(MMA-co-AA))为壳材的微胶囊.分别用相差显微镜、扫描电镜、差示扫描量热分析仪和傅里叶变换红外光谱仪测定了微胶囊的形貌、热性能和壳材化学结构.微胶囊的直径范围为1~5μm,其中相变芯材的含量可达70%左右,具有较高的相变潜热(99 J/g),有望应用于空调、供暖等领域.  相似文献   

12.
Phase change material microcapsules were prepared by complex coacervation of silk fibroin (SF) and chitosan (CHI). n-Eicosane was used as the core material. The effects of SF/CHI ratio, and percentage of cross-linking agent and n-Eicosane content on the properties of microcapsules were studied. The size distribution and the surface morphology of microcapsules were characterized by optical and scanning electron microscopy. The encapsulation of core material was determined by energy dispersive spectrometer analysis. The results indicated that SF/CHI microcapsules were prepared successfully. Microcapsules had smooth outer surface when the ratio of SF to CHI was close to 5. On the other hand, at high SF/CHI ratios (≥14), microcapsules showed a two-layer structure, an inner compact layer, and an outer, more porous, sponge-like layer. The highest microencapsulation efficiency was obtained at a SF/CHI ratio of 20 in the presence of 0.9% cross-linking agent and of 1.5% n-Eicosane content.  相似文献   

13.
Glycidyl‐functional polymer nanoparticles [poly(glycidyl methacrylate) (PGMA)] were fabricated with microemulsion polymerization. The successful fabrication of PGMA nanoparticles was confirmed by Fourier transform infrared spectroscopy and transmission electron microscopy (TEM). A TEM image showed that the average diameter of the PGMA nanoparticles was approximately 10–28 nm and was fairly monodisperse. As the surfactant concentration increased, the average size of the nanoparticles decreased and approached an asymptotic value. A significant reduction of the nanoparticle size to the nanometer scale led to an enhanced number of surface functionalities, which played an important role in the curing reaction. The PGMA nanoparticles were cured with a low‐temperature curing agent, diethylene triamine, to produce ultrafine thermoset nanoparticles. The low‐temperature curing process was performed below the glass‐transition temperature of PGMA to prevent the coagulation and deformation of the nanoparticles. A TEM image indicated that the cured PGMA nanoparticles did not exhibit interparticle aggregation and morphological transformation during curing. The average size of the cured PGMA nanoparticles was consistent with that of the pristine PGMA nanoparticles © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2258–2265, 2005  相似文献   

14.
A series of microcapsules filled with epoxy resins with poly(urea-formaldehyde) (PUF) shell were synthesized by in situ polymerization, and they were heat-treated for 2 h at 100 °C, 120 °C, 140 °C, 160 °C, 180 °C and 200 °C. The effects of surface morphology, wall shell thickness and diameter on the thermal stability of microcapsules were investigated. The chemical structure and surface morphology of microcapsules were investigated using Fourier-transform infrared spectroscope (FTIR) and scanning electron microscope (SEM), respectively. The thermal properties of microcapsules were investigated by thermogravimetric analysis (TGA and DTA) and by differential scanning calorimetry (DSC). The thermal damage mechanisms of microcapsules at lower temperature (<251 °C) are the diffusion of the core material out of the wall shell or the breakage of the wall shell owing to the mismatch of the thermal expansion of core and shell materials of microcapsules. The thermal damage mechanisms of microcapsules at higher temperature (>251 °C) are the decomposition of shell material and core materials. Increasing the wall shell thickness and surface compactness can enhance significantly the weight loss temperatures (Td) of microcapsules. The microcapsules with mean wall shell thickness of 30 ± 5 μm and smoother surface exhibit higher thermal stability and can maintain quite intact up to approximately 180 °C.  相似文献   

15.
界面聚合法制备正二十烷微胶囊化相变储热材料   总被引:5,自引:0,他引:5  
采用界面聚合的方法, 以甲苯鄄2,4-二异氰酸酯(TDI)和乙二胺(EDA)为反应单体, 非离子表面活性剂聚乙二醇壬基苯基醚(OP)为乳化剂, 合成了正二十烷为相变材料的聚脲包覆微胶囊. 结果表明, 二异氰酸酯和乙二胺按质量比1.9:1 进行反应. 以透射电镜和激光粒度分析仪分析微胶囊, 测得空心微胶囊直径约为0.2 μm, 含正二十烷微胶囊约为2-6 μm. 红外光谱分析证明, 壁材料聚脲是由TDI 及EDA 两种单体形成的. 正二十烷的包裹效率约为75%. 微胶囊的熔点接近囊芯二十烷的熔点, 而其储热量在壁材固定时随囊芯的量而变. 热重分析表明, 囊芯正二十烷、含正二十烷的微胶囊以及壁材料聚脲, 能够耐受的温度分别约为130 ℃、170 ℃及270 ℃.  相似文献   

16.
The current research work presents a novel nonionic curing agent (AEDA) synthesized by utilizing ethylene glycol diglycidyl ether (EGDE), 3,4-dimethoxyaniline (DI), and triethylenetetramine (TETA). Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the structure of AEDA curing agent. Non-isothermal scanning calorimetry was used to determine the activation energy and curing conditions of epoxy resin in the curing process. An impact testing machine, a tensile testing machine and a scanning electron microscope (SEM) were used to analyze the impact strength, tensile strength, bending strength, and micromorphology of the AEDA/E-51 system with different mass ratios. The results show that AEDA is an effective high-temperature curing agent. For the AEDA/E-51 system with the optimal mass ratio of 10:100, the best curing temperature is 92.15°C, and the post-curing temperature is 135.65°C. Furthermore, the apparent activation energy (Ea) of 1670 J/mol, the pre-exponential factor (A) of 3.7 × 10?4, and the reaction series (n) value of 0.76 are obtained for the AEDA/E-51 system. The impact strength of AEDA/E-51 epoxy resin polymer is 7.82 kJ/m2, tensile strength is 14.2 MPa, and bending strength is 18.92 MPa. The micromorphological results of the AEDA/E-51 system are consistent with the results of DSC test and mechanical properties test. Hence, this study provides theoretical support for the practical applications of AEDA as curing agent.  相似文献   

17.
分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球   总被引:13,自引:0,他引:13  
文中描述了粒度均匀的聚甲基丙烯酸环氧丙酯微球的制备,所采用的是分散聚合方法,系统地研究了溶剂体系、单体浓度、引发剂类型与浓度、稳定剂用量、反应温度等各种聚合参数,对聚合产物粒度及其分散性的影响.在优化反应条件的基础上,制备出了微米级(1~8μm)粒度均匀性基本呈现单分散的聚合物微球.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号