首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The phase behavior of aqueous solutions of mixed cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was examined at different temperatures (20, 30, 40, and 50 degrees C). While stable vesicles were formed in a narrow composition range on the SOS-rich side at 20 degrees C, the range widened remarkably when the temperature was raised to 30 degrees C. Thus, the vesicle region extended to cover almost the entire composition range, CTAB:SOS = 0.5:9.5-5.0:5.0, at the total surfactant concentrations of 50-70 mM on the SOS-rich side. To analyze the temperature dependence of this phase behavior of the mixed surfactant system, DSC and fluorescence polarization measurements were performed on the system. The experimental findings obtained revealed that pseudo-double-tailed CTAB/SOS complex, the major component of the bimolecular membrane formed by the surfactant mixture, undergoes a gel (Lbeta)-liquid crystal (Lalpha) phase transition at about 26 degrees C. This phenomenon was interpreted as showing that the bimolecular membrane has no curvature and is rigid and easy to precipitate at temperatures below the phase transition point, whereas it has a curvature and is loose enough to disperse in the solution as vesicles at temperatures above the phase transition point. Vesicles formed by the anionic/cationic surfactant complex were then stable at temperatures above the phase transition temperature of the complex.  相似文献   

2.
Pascoe RJ  Foley JP 《Electrophoresis》2003,24(24):4227-4240
The physical, electrophoretic and chromatographic properties (mean diameter, electroosmotic flow, electrophoretic mobility, elution range, efficiency, retention, and hydrophobic, shape, and chemical selectivity) of three surfactant vesicles and one phospholipid vesicle were investigated and compared to a conventional micellar pseudostationary phase comprised of sodium dodecyl sulfate (SDS). Chemical selectivity (solute-pseudostationary phase interactions) was discussed from the perspective of linear solvation energy relationship (LSER) analysis. Two of the surfactant vesicles were formulated from nonstoichiometric aqueous mixtures of oppositely charged, single-tailed surfactants, either cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) in a 3:7 mole ratio or octyltrimethylammonium bromide (OTAB) and SDS in a 7:3 mole ratio. The remaining surfactant vesicle was comprised solely of bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in 10% v/v methanol, and the phospholipid vesicle consisted of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and phosphatidyl serine (PS) in 8:2 mole ratio. The mean diameters of the vesicles were 76.3 nm (AOT), 86.9 nm (CTAB/SOS), 90.1 nm (OTAB/SDS), and 108 nm (POPC/PS). Whereas the coefficient of electroosmotic flow (10(-4) cm2 V(-1) s(-1)) varied considerably (1.72 (OTAB/SDS), 3.77 (CTAB/SOS), 4.05 (AOT), 5.26 (POPC/PS), 5.31 (SDS)), the electrophoretic mobility was fairly consistent (-3.33 to -3.87 x 10(-4) cm2 V(-1) s(-1)), except for the OTAB/SDS vesicles (-1.68). This resulted in elution ranges that were slightly to significantly larger than that observed for SDS (3.12): 3.85 (POPC/PS), 8.6 (CTAB/SOS), 10.1 (AOT), 15.2 (OTAB/SDS). Significant differences were also noted in the efficiency (using propiophenone) and hydrophobic selectivity; the plate counts were lower with the OTAB/SDS and POPC/PS vesicles than the other pseudostationary phases (< or = 75,000/m vs. > 105,000/m), and the methylene selectivity was considerably higher with the CTAB/SOS and OTAB/SDS vesicles compared to the others (ca. 3.10 vs. < or = 2.6). In terms of shape selectivity, only the CTAB/SOS vesicles were able to separate all three positional isomers of nitrotoluene with near-baseline resolution. Finally, through LSER analysis, it was determined that the cohesiveness and hydrogen bond acidity of these pseudostationary phases have the greatest effect on solute retention and selectivity.  相似文献   

3.
The effect of the phase ratio on the electrophoretic and chromatographic properties of unilamellar vesicles comprised of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was investigated in EKC. The surfactant concentration of the vesicles was 0.9, 1.2, 1.5, and 1.8% w/v, with a mole ratio of 1:3.66 (CTAB/SOS). Results were compared to those obtained using SDS micelles at concentrations of 1.0% (w/v, 35 mM) and 1.5% (52 mM). The CTAB/SOS vesicles (0.9-1.8% w/v) provided a significantly larger elution range (5.7 < or = t(ves)/t(0) < or = 8.7) and greater hydrophobic (methylene) selectivity (2.8 < or = alpha(CH2) < or = 3.1) than SDS micelles (3.1 < or = t(mc)/t(0) < or = 3.3; alpha(CH2) = 2.2). Whereas the larger elution range can be attributed to the 25% reduction in EOF due to the interaction of unaggregated CTAB cations and the negatively charged capillary wall, the higher methylene selectivity is likely due to the lower concentration of water expected in the CTAB/SOS vesicle bilayer compared to the Palisades layer of SDS micelles. For a given phase ratio, CTAB/SOS vesicles are somewhat less retentive than SDS micelles, although retention factors comparable to those observed in 1.0-1.5% SDS can be obtained with 1.5-1.8% CTAB/SOS. A linear relationship was observed between phase ratio and retention factor, confirming the validity of the phase ratio model for these vesicles. Unique polar group selectivities and positional isomer shape selectivities were obtained with CTAB/SOS vesicles, with both types of selectivities being nearly independent of the phase ratio. For four sets of positional isomers, the elution order was always para < ortho < meta. Finally, the thermodynamics of solute retention was qualitatively similar to that reported for other surfactant aggregates (micelles and microemulsions); the enthalpic contribution to retention was consistently favorable for all compounds, whereas the entropic contribution was favorable only to hydrophobic solutes.  相似文献   

4.
The effect of 1-hexanol on the phase behavior of aqueous solutions of sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) has been systematically studied. The phase ranges of vesicle and liquid crystal (LC) can be greatly extended with the addition of 1-hexanol. These specific structures distributed symmetrically on the two sides of the SDS/CTAB equimolar line in the pseudo ternary phase diagram. The aqueous two phase system (ATPS) contained vesicles that would transform into lamellar LC with the change of ratio of SDS/CTAB. The phase behaviors of SDS/CTAB system with addition of different alcohols (C5OH–C8OH) showed similar trends in structural transition except for phase span, demonstrating that the obstruction of electrostatic interaction between surfactant polar heads was affected by the insertion depth of the added alcohols.  相似文献   

5.
The encapsulation of DNA by catanionic vesicles has been investigated; the vesicles are composed of one cationic surfactant, in excess, and one anionic. Since cationic systems are often toxic, we introduced a novel divalent cationic amino-acid-based amphiphile, which may enhance transfection and appears to be nontoxic, in our catanionic vesicle mixtures. The cationic amphiphile is arginine-N-lauroyl amide dihydrochloride (ALA), while the anionic one is sodium cetylsulfate (SCS). Vesicles formed spontaneously in aqueous mixtures of the two surfactants and were characterized with respect to internal structure and size by cryogenic transmission electron microscopy (cryo-TEM); the vesicles are markedly polydisperse. The results are compared with a study of an analogous system based on a short-chained anionic surfactant, sodium octylsulfate (SOS). Addition of DNA to catanionic vesicles resulted in associative phase separation at very low DNA concentrations; there is a separation into a precipitate and a supernatant solution; the latter is first bluish but becomes clearer as more DNA is added. From studies using cryo-TEM and small angle X-ray scattering (SAXS) it is demonstrated that there is a lamellar structure with DNA arranged between the amphiphile bilayers. Comparing the SOS containing DNA-vesicle complexes with the SCS ones, an increase in the repeat distance is perceived for SCS. Regarding the phase-separating DNA-amphiphile particles, cryo-TEM demonstrates a large and nonmonotonic variation of particle size as the DNA-amphiphile ratio is varied, with the largest particles obtained in the vicinity of overall charge neutrality. No major differences in phase behavior were noticed for the systems here presented as compared with those based on classical cationic surfactants. However, the prospect of using these systems in real biological applications offers a great advantage.  相似文献   

6.
Counterion and organic modifier are two parameters in EKC that can be varied in order to obtain improved solubility, selectivity, and efficiency. The effect of changing surfactant counterion and/or organic modifier on the chromatographic and electrophoretic properties of cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfate (SOS) vesicles is examined in EKC. The vesicles are prepared in a 1:3.66 cationic/ anionic mole ratio for a total surfactant concentration of 69 mM. The cationic CTAB is replaced by cetyltrimethylammonium chloride (CTAC) and the first use of CTAC/SOS vesicles is reported. The mean diameter of the CTAC/SOS vesicles is 96 nm while that of the CTAB/SOS vesicles is 85 nm. A class I modifier (2-amino-1-butanol) and a class II modifier (acetonitrile) have similar effects on the EOF, elution range, methylene selectivity, and the efficiency of the CTAB/SOS vesicles and the CTAC/SOS vesicles. Upon addition of 10% ACN, there is roughly a 10-fold increase in the efficiency of heptanophenone, a model hydrophobic compound, compared to the efficiency using unmodified vesicles. Linear free energy relationship (LFER) analysis using the Abraham solvation model is employed to characterize solute-vesicle interactions. The results suggest that organic modifier-vesicle interactions depend somewhat on the counterion.  相似文献   

7.
Vesicle electrokinetic chromatography (VEKC) using vesicles synthesized from the oppositely charged surfactants cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) and from the double-chained anionic surfactant bis(2-ethylhexyl)sodium sulfosuccinate (AOT) was applied to the indirect measurement of octanol-water partition coefficients (log Po/w). A variety of small organic molecules with varying functional groups, pesticides, and organic acids were evaluated by correlating log Po/w and the logarithm of the retention factor (log k') and comparing the calibrations. A linear solvation energy relationship (LSER) analysis was conducted to describe the retention behavior of the vesicle systems and compared to that of octanol-water partitioning. The solute hydrogen bond donating behavior is slightly different with the vesicle interactions using CTAB-SOS vesicles as compared to the octanol-water partitioning model. The AOT vesicle and octanol-water partitioning systems showed similar partitioning characteristics. VEKC provides rapid separations for determinations of log Po/w in the range of 0.5 to 5 using CTAB-SOS vesicles and 0 to 5.5 using AOT vesicles.  相似文献   

8.
The formation of gold nanoparticles and the crystal growth at the surface of mixed phosphatidylcholine (PC)-ionic surfactant vesicles was investigated. The PC-bilayer surface was negatively charged by incorporating sodium dodecyl sulfate (SDS) and positively charged by adding hexadecyltrimethylammonium chloride (CTAB). The mass ratio phosphatidylcholine:surfactant was fixed in both cases at 1:1. The gold nanoparticle formation was studied by using transmission electron microscopy (TEM) combined with dynamic light scattering (DLS) and UV-vis absorption spectroscopy. TEM micrographs confirm that the particle formation occurs on the vesicle surface. However, the reduction process depends on the ionic surfactant incorporated into the vesicles, the vesicle size distribution, as well as the temperature used for the reduction process. Thereby, it becomes possible to control the crystal growth of the individual spherical gold nanoparticles in a characteristic way. Red colored colloidal dispersions consisting of monodisperse spherical nanoparticles with an average particle size between 2 and 8 nm (determined by dynamic light scattering) can be obtained by using a monodisperse SDS-modified vesicle phase. When the temperature is increased to 45 degrees C, a crystallization in rod-like or triangular structures is observed. In the CTAB-based template phase in general larger gold particles of about 35 nm are formed. In similarity to the anionic vesicles a temperature increase leads to the crystallization in triangular structures.  相似文献   

9.
对辛基三甲基溴化铵(OTAB)与辛基硫酸钠(SOS)正、负离子混合表面活性剂水溶液的相行为进行了研究.在高浓度的溶液中,混合表面活性剂形成液晶相,随着混合摩尔比OTAB/SOS接近于1,液晶结构由六角相转层状相,同时夹杂少量沉淀物;在中等浓度时,任意混合摩尔比例下皆为均相透明溶液;在低浓度下,在很宽的OTAB/SOS混合摩尔比的范围,出现双水相,其中的表面活性剂稀薄相,为不同大小的胶团与囊泡组成的稀溶液,另一表面活性剂富集相中则为数密度很大的囊泡聚集体,富集相对油溶性染料的增溶作用比非富集相高得多.  相似文献   

10.
We studied the phase behavior and aggregation in mixed aqueous solutions of the anionic UV-absorber 2-phenylbenzimidazole-5-sulfonic acid sodium salt, PhBSA (Na salt), and the cationic surfactant cetyltrimethylammonium bromide, CTAB. The mixtures of the two components behave similarly to catanionic surfactant mixtures. The samples on the PhBSA-rich side have low viscosity and are turbid. The turbidity, due to uni- and multilamellar vesicles (SUVs and MLVs), increases with the mole ratio of CTAB. The interbilayer distance inside the MLV changes with the mole ratio of the two components from a few 10 nm for the 7:3 (molar ratio of PhBSA, Na salt, to CTAB) system to practically zero for the 5:5 mixture. The latter mixture forms a precipitate within less than 1 h. With the exception of the 5:5 mixture, all samples on the PhBSA-rich side are stable for many days. After that period, within one more day, the turbid vesicle phases are transformed into more or less clear hydrogels. We found that the gelation is due to the formation of very long stiff tubules about 14 nm in diameter, which is independent of the mixing ratio of the samples. The hydrogels and the tubules melt around 45 degrees C. On the CTAB-rich side, the 4:6 sample behaves like the 6:4 sample, whereas at 3:7 a precipitate was found to form shortly after mixing. At still smaller PhBSA (Na salt) to CTAB ratios, only clear, viscoelastic solutions are found that do not change with time. We determined the micellar structures in the samples by cryo-TEM and by SAXS. The rheological properties of the hydrogels and of the viscoelastic samples were characterized by oscillating rheological measurements. DSC measurements indicated that the tubules are in a semicrystalline state and melt at around 45 degrees C. The semicrystalline bilayer of the tubules seems to have a 1:1 composition of PhBSA to CTAB. The excess PhBSA seems to be adsorbed on the tubules. It is assumed that the stiffness of the bilayer of the vesicles and the stiffness of the tubules are due to the stiffness of the PhBSA molecule.  相似文献   

11.
The paper describes a study for the determination of the phase behavior of a self-assembling dilute aqueous cetyl trimethylammonium bromide (CTAB) and dodecyl benzene sulfonic acid (HDBS) system using flow in microchannels. The diffusional length scales of approximately 10-100 microm and volumes on the order of a few tens of nanoliters allow fast composition and temperature homogeneity compared to "bulk" experiments, where characteristic volumes and length scales are on the order of milliliters and centimeters, respectively. Fluorescence emission of a polarity-sensitive fluorophore was used with the surfactants for phase characterization. To demonstrate the validity of the new approach, the critical micelle concentrations (cmc) for CTAB and HDBS were first shown to agree with the cmc obtained in the literature under bulk conditions. Subsequently, the microstructures of dilute (less than 0.8 wt % total surfactant) aqueous mixtures of CTAB and HDBS were examined. The range of desired concentrations and accurate flow dilutions of the samples were achieved by imposing controlled pressure gradients across the channel network. Marked changes in slopes of fluorescence emission intensity versus composition were used to demarcate phase boundaries. A series of microstructures ranging from mixed micelles (M), vesicles (V), and giant vesicles (GV) was observed in the ternary CTAB/HDBS/water system. Experimental data from the microfluidic method was found to be consistent with the results obtained from bulk phase experiments using fluorescence, turbidity, dynamic light scattering, and cryogenic transmission electron microscopy.  相似文献   

12.
Mixed vesicles can be formed spontaneously from aqueous mixture of the double‐tailed anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) and the nonionic surfactant octylphenoxypolyethoxyethanol (Triton X‐100) under the inducement of salt, the formation mechanism of which should be attributed to the compression of salt on the electric bilayers of the head groups. The stability and the polydispersity of the vesicles are superior to single‐component AOT vesicles, which can be proved by the TEM image and visual observation. The vesicle region was presented in a pseudo‐ternary diagram of AOT/TX‐100/brine. The size of the vesicle was measured using dynamic light scattering. It is found that the vesicle size increases with the salinity but decreases with the content of TX‐100 in the mixture at the same salinity. Especially, the vesicle size is independent of the surfactant concentration at fixed salinity.  相似文献   

13.
The phase diagram of the ternary surfactant system tetradecyldimethylamine oxide (TDMAO)/HCl/1-hexanol/water shows with increasing cosurfactant concentration an L(1) phase, two L(alpha) phases (a vesicle phase L(alpha1) and a stacked bilayer phase L(alphah)), and an L(3) phase, which are separated by the corresponding two-phase regions L(1)/L(alpha) and L(alpha)/L(3). In this investigation, the system was studied where some of the TDMAO was substituted by the protonated TDMAO. Under these conditions, one finds for constant surfactant concentration of 100 mM TDMAO a micellar L(1) phase, an L(alpha1) phase (consisting of multilamellar vesicles), and an interesting isotropic L(1)(*) phase in the middle of the L(1)/L(alpha) two-phase region. The L(1)(*) phase exists at intermediate degrees of charging of 30-60% and for 40-120 mM TDMAO and 70-140 mM hexanol concentration. At surfactant concentrations less than 80 mM the L(1)(*)-phase borders directly on the L(1) phase. The phase transition between the L(1) phase and the L(1)(*) phase was detected by electric conductivity and rheological measurements. The conductivity values show a sharp drop at the L(1)/L(1)(*) transition, and the zero shear viscosity of the L(1)(*) phase is much lower than in L(1) phase. The form and size of the aggregates in L(1)(*) were detected with FF-TEM and SANS. This phase contains small unilamellar vesicles (SUV) of about 10 nm and some large multilamellar vesicles with diameters up to 500 nm. The system exhibits another peculiarity. For 100 mM surfactant, the clear L(alpha1)-phase exists only at chargings below 30%. With oscillating rheological measurements a parallel development of the storage modulus G' and the loss modulus G" was observed. Both moduli are frequency independent and the system possesses a yield stress. The storage modulus is a magnitude larger than the loss modulus. Copyright 2000 Academic Press.  相似文献   

14.
Vesicles can be formed spontaneously in aqueous solution of a single anionic surfactant sodium dodecyl benzenesulfonate (SDBS) just under the inducement of salt, which makes the formation of vesicle much easier and simpler. The existence of vesicles was demonstrated by TEM image using the negative-staining method. The mechanism of the formation may be attributed to the compression of salt on the electric bilayer of the surfactant headgroups, which alters the packing parameter of the surfactant. The addition of the zwitterionic surfactant lauryl sulfonate betaine (LSB) makes the vesicles more stable, expands the range of formation and vesicle size, and reduces the polydispersity of the vesicles. The vesicle region was presented in a pseudoternary diagram of SDBS/LSB/brine. The variations of vesicle size with the salinity and mixing ratios, as well as the surfactant concentration, were determined using the dynamic light scattering method. It is found that the vesicle size is independent of the surfactant concentration but subject to the salinity and the mixing ratio of the two surfactants.  相似文献   

15.
The phase behavior and aggregate structures of mixtures of the oppositely charged surfactants cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) are explored at high dilution by pulsed field gradient stimulated echo (PFG-STE) NMR. The aggregation numbers and hydrodynamic radii of vesicles and mixed micelles were determined by a combination of viscosity and self-diffusion coefficient measurements. The average size of the mixed micelles was larger than that of micelles containing uniformly charged head groups. Analysis of the variations of the self-diffusion coefficient and viscosity with changing concentration of CTAB or SDS in the cationic-rich and anionic-rich regions revealed a phase transition from vesicles to mixed micelles. Differences in the lengths of the CTAB and SDS hydrophobic chains stabilize vesicles relative to other microstructures (e.g., liquid crystalline and precipitate phase), and vesicles form spontaneously over a wide range of compositions in both cationic-rich and anionic-rich solutions. The results obtained from conductometry measurements confirmed this transition. Finally, according to the capacitor model, a new model was developed for estimating the surface potentials and electrostatic free energy (g(elec)). Then we investigated the variations of electrostatic and transfer free energy in phase transition between mixed micelle and vesicle.  相似文献   

16.
The self-assembly of dialkyl chain cationic surfactant dihexadecyldimethyl ammonium bromide, DHDAB, and nonionic surfactants monododecyl hexaethylene glycol, C(12)E(6), and monododecyl dodecaethylene glycol, C(12)E(12), mixtures has been studied using predominantly small-angle neutron scattering, SANS. The scattering data have been used to produce a detailed phase diagram for the two surfactant mixtures and to quantify the microstructure in the different regions of the phase diagram. For cationic-surfactant-rich compositions, the microstructure is in the form of bilamellar, blv, or multilamellar, mlv, vesicles at low surfactant concentrations and is in an L(beta) lamellar phase at higher surfactant concentrations. For nonionic-rich compositions, the microstructure is predominantly in the form of relatively small globular mixed surfactant micelles, L(1). At intermediate compositions, there is an extensive mixed (blv/mlv) L(beta)/L(1) region. Although broadly similar, in detail there are significant differences in the phase behavior of DHDAB/C(12)E(6) and DHDAB/C(12)E(12) as a result of the increasing curvature associated with C(12)E(12) aggregates compared to that of C 12E 6 aggregates. For the DHDAB/C(12)E(12) mixture, the mixed (blv/mlv) L(beta)/L(1) phase region is more extensive. Furthermore, C(12)E(12) has a greater impact upon the rigidity of the bilayer in the blv, mlv, and L(beta) regions than is the case for C(12)E(6). The general features of the phase behavior are also reminiscent of that observed in phospholipid/surfactant mixtures and other related systems.  相似文献   

17.
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.  相似文献   

18.
RNA and vesicles are two important molecular classes in the origin of life and early evolution, but they are not generally considered as interacting partners. The present paper reports about the interaction between tRNA (Esherichia coli) and vesicles made of the zwitterionic surfactant POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), partially positively charged with small molar fractions (max 10%) of the single-chained CTAB (cetyltrimethylammonium bromide). CTAB is capable to insert efficiently in POPC vesicles (as determined by zeta-potential measurements), and the binding of tRNA to such charged vesicles operates a strong selection being critically dependent upon the vesicle size. The binding of tRNA to the vesicles is size-selective as it induces a strongly pronounced process of aggregation of large vesicles (ca. 160-nm diameter) but not of small ones (ca. 80-nm diameter) that are stable against vesicle aggregation (as followed by dynamic light-scattering and optical density measurements). The aggregation of the large vesicles is fully reversible upon the addition of RNase A. The selective behavior of tRNA with respect to differently sized vesicles is observable in separated samples as well as in a mixture of both populations. In the latter case, the fraction of large vesicles readily aggregates in the presence of the small ones that remain unaltered in the mixture. This kind of discrimination capability of RNA might have been of importance in the early phases of the formation of the protocells.  相似文献   

19.
The self-assembly in aqueous solution of the acidic (AS) and lactonic (LS) forms of the sophorolipid biosurfactant, their mixtures, and their mixtures with anionic surfactant sodium dodecyl benzene sulfonate, LAS, has been studied using predominantly small-angle neutron scattering, SANS, at relatively low surfactant concentrations of <30 mM. The more hydrophobic lactonic sophorolipid forms small unilamellar vesicles at low surfactant concentrations, in the concentration range of 0.2 to 3 mM, and transforms via a larger unilamellar vesicle structure at 7 mM to a disordered dilute phase of tubules at higher concentrations, 10 to 30 mM. In marked contrast, the acidic sophorolipid is predominantly in the form of small globular micelles in the concentration range of 0.5 to 30 mM, with a lower concentration of larger, more planar aggregates (lamellar or vesicular) in coexistence. In mixtures of AS and LS, over the same concentration range, the micellar structure associated with the AS sophorolipid dominates the mixed-phase behavior. In mixtures of anionic surfactant LAS with the AS sophorolipid, the globular micellar structure dominates over the entire composition and concentration range studied. In contrast, mixtures of LAS with the LS sophorolipid exhibit a rich evolution in phase behavior with solution composition and concentration. At low surfactant concentrations, the small unilamellar vesicle structure present for LS-rich solution compositions evolves into a globular micelle structure as the solution becomes richer in LAS. At higher surfactant concentrations, the disordered lamellar structure present for LS-rich compositions transforms to small vesicle/lamellar coexistence, to lamellar/micellar coexistence, to micellar/lamellar coexistence, and ultimately to a pure micellar phase as the solution becomes richer in LAS. The AS sophorolipid surfactant exhibits self-assembly properties similar to those of most other weakly ionic or nonionic surfactants that have relatively large headgroups. However, the more hydrophobic nature of the lactonic sophorolipid results in a more complex and unusual evolution in phase behavior with concentration and with concentration and composition when mixed with anionic surfactant LAS.  相似文献   

20.
Rich phase behavior was observed in salt-free cationic and anionic (catanionic) mixtures of a double-tailed surfactant, di(2-ethylhexyl)phosphoric acid (abbreviated as DEHPA), and tetradecyldimethylamine oxide (C(14)DMAO) in water. At a fixed C(14)DMAO concentration, phase transition from L(1) phase to L(α) phase occurs with increasing amounts of DEHPA. Moreover, in the L(α) phase, with the increase in DEHPA concentration, a gradual transition process from vesicle phase (L(αv)) to stacked lamellar phase (L(αl)) was determined by cryo- and FF-TEM observations combining with (2)H NMR measurements. The rheological data show that the viscosity increases with DEHPA amounts for L(αv) phase samples because of the increase in vesicle density. At a certain molar ratio of DEHPA to C(14)DMAO, i.e., 80:250, the samples are with the highest viscoelasticity, indicating the existence of densely packed vesicles. While for L(αl) phase samples, with increasing DEHPA amount, a decrease of bilayer curvature was induced, leading to a decrease of viscosity obviously. Compared with general catanionic surfactant mxitures, in addition to the electrostatic interaction of ion pairs, the transition of the microstructures is also ascribed to the formation of the hydrogen bonding (-N(+)-O-H···O-N-) between C(14)DMAO molecules and protonated C(14)DMAOH(+), which induces the growth of aggregates and the decrease of aggregate curvatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号