首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Total glucosides of paeony are the active constituents of Paeoniae Radix Alba. In this study, a novel strategy was proposed to find more metabolites and the differences between paeoniflorin, albiflorin and total glucosides of paeony (TGP). This strategy was characterized as follows: firstly, the animals were divided into three groups (paeoniflorin, albiflorin and TGP) to identify the source of TGP metabolites from paeoniflorin or albiflorin; secondly, a generic information‐dependent acquisition scan for the low‐level metabolites was triggered by the multiple mass defect filter and dynamic background subtraction; thirdly, the metabolites were identified with a combination of data‐processing methods including mass defect filtering, neutral loss filtering and product ion filtering; finally, a comparative study was used in the metabolism of paeoniflorin, albiflorin and TGP. Based on the strategy, 18 metabolites of TGP, 10 metabolites of paeoniflorin and 13 metabolites of albiflorin were identified respectively. The results indicated that the hydrolysis, conjugation reaction and oxidization were the major metabolic pathways, and the metabolic sites were the glycosidic linkage, the ester bond and the benzene ring. This study is first to explore the metabolism of TGP, and these findings enhance our understanding of the metabolism and the interactions of paeoniflrin and albiflorin in TGP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Moxifloxacin and rifampicin are all the first‐line options for the treatment of active tuberculosis, which are often combined for the treatment of multidrug resistance pulmonary tuberculosis in clinic. However, the potential drug–drug interactions between moxifloxacin and rifampicin were unknown. The aim of this study was to investigate the drug–drug interactions between moxifloxacin and rifampicin based on their pharmacokinetics in vivo after oral administration of the single drug and both drugs, and reveal their mutual effects on their pharmacokinetics. Eighteen male Sprague–Dawley rats were randomly assigned to three groups: moxifloxacin group, rifampicin group and moxifloxacin + rifampicin group. Plasma concentrations of moxifloxacin and rifampicin were determined using LC‐MS at the designated time points after drug administration, and the main pharmacokinetic parameters were calculated. In addition, effects of moxifloxacin and rifampicin on their metabolic rate and absorption were investigated using rat liver microsome incubation systems and Caco‐2 cell transwell model. The main pharmacokinetic parameters of moxifloxacin including Tmax, Cmax, t1/2 and AUC(0–t) increased more in the moxifloxacin + rifampicin group than in the moxifloxacin group, but the difference was not significant (p > 0.05). However, the pharmacokinetic parameters of rifampicin, including peak concentration, area under the concentration–time curve, half‐life and the area under the first moment plasma concentration–time curve, increased significantly (p < 0.05) compared with the rifampicin group, and the time to peak concentration decreased significantly (p < 0.05). The mean residence time of rifampicin also increased in moxifloxacin + rifampicin group compared with the rifampicin group, but the difference was not significant (p > 0.05). The rat liver microsome incubation experiment indicated that moxifloxacin could increase the metabolic rate of rifampicin from 23.7 to 38.7 min. However, the Caco‐2 cell transwell experiment showed that moxifloxacin could not affect the absorption rate of rifampicin. These changes could enhance the drug efficacy, but they could also cause drug accumulation, which might induce adverse effect, so it was suggested that the drug dosage should be adjusted and the drug concentration in plasma should be monitored if moxifloxacin and rifampicin are co‐administered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A clear understanding of the metabolism of Traditional Chinese Medicines is extremely important in their rational clinical application and effective material foundation research. A novel and reliable strategy was performed to find more metabolites of paeoniflorin, determine the metabolites of total paeony glucosides (TPG) by means of determining those metabolites of paeoniflorin, and compare the metabolism differences between paeoniflorin and TPG by intragastric administration. This strategy was characterized as follows. Firstly, the rats were divided into two groups (the paeoniflorin group and the TPG group) to find differences in metabolism mechanisms between paeoniflorin and TPG. Secondly, UPLC‐FT‐ICR MS and UPLC‐Q‐TOF MS2 were applied to obtain accurate molecular weight and structural information, respectively. Thirdly, the metabolites were tentatively identified by a combination of data‐processing methods including mass defect screening, characteristic neutral loss screening and product ion screening. Finally, a comparative study was employed in the metabolism of paeoniflorin and TPG. Based on the strategy, 18 metabolites of paeoniflorin (including four new compounds) and 11 metabolites of TPG (including two new compounds) were identified. In all of the identified metabolites of paeoniflorin, two metabolites in rat plasma, four metabolites in rat urine and six metabolites in rat feces were found for the first time after paeoniflorin administration. The results indicate that hydrolyzation of the ester bond and glucosidic band and conjugation with glucuronide were the major metabolic pathways of paeoniflorin. The metabolites of paeoniflorin and TPG in rat plasma, urine and feces have been detected for the first time after intragastric administration. The results may contribute to a better understanding of the metabolism mechanism and provide a scientific rationale for researching the material basis of paeoniflorin and TPG in vivo.  相似文献   

4.
Docetaxel, frequently used for the treatment of breast cancer, is mainly metabolized via hepatic cytochrome P450 (CYP) 3A in humans and is also a substrate of P‐glycoprotein (P‐gp). Wogonin has been shown to be able to modulate the activities of CYPs and P‐gp, and it could serve as an adjuvant chemotherapeutic agent. However, the impacts of co‐administration of wogonin and docetaxel on their pharmacokinetics have not been studied because of a lack of an analytical method for their simultaneous measurement. In the present study, we established an HPLC–MS/MS method for simultaneous measurement of wogonin and docetaxel in rat plasma, and it was then utilized to explore the pharmacokinetics of wogonin and the herb–drug interactions between wogonin and docetaxel after their combined administration in rats with mammary tumors. The rats received 10, 20 and 40 mg/kg wogonin via oral administration, with or without docetaxel intravenously administered at 10 mg/kg, and the plasma concentrations of wogonin and docetaxel were measured using the established and validated HPLC–MS/MS method. The Cmax and AUC0–t of wogonin were proportionally increased in the dose range from 10 to 40 mg/kg, suggesting a linear pharmacokinetics of wogonin. Moreover, the Cmax and AUC0–t of docetaxel and the AUC0–t of wogonin were increased after co‐administration (p < 0.05), indicating increased in vivo exposures of both wogonin and docetaxel, which might lead to an increase in not only therapeutic but also toxic effects. Thus the alterations of pharmacokinetics should be taken into consideration when wogonin and docetaxel are co‐administered.  相似文献   

5.
Lizhong decoction (LZD), a classic formula, has been used to treat ulcerative colitis (UC) for thousands of years in clinical practice. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological states are not clear. Thus, in this study, a rapid and sensitive analytical method, ultra‐performance liquid chromatography coupled with mass spectrometry (UPLC–MS/MS) method, was developed and applied to simultaneously determine glycyrrhizic acid, liquiritin, isoliquiritin, glycyrrhizin, isoliquiritigenin, 6‐gingerol, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Re in normal and UC rats after oral administration of LZD extract. A Waters BEH C18 UPLC column was used for chromatographic separation, while acetonitrile and 0.1% formic acid were selected as mobile phase. The linearity of nine analytes was >0.9920. Inter‐ and intra‐day accuracy was ≤ 11.4% and precision was from 1.1 to 12.7%. Additionally, stable and suitable extraction recoveries were also obtained. The established method was validated and found to be specific, accurate and precise for nine analytes. Furthermore, it was successfully applied to the pharmacokinetic investigation of nine major components after oral administration of LZD extracts to normal and model rats, respectively. The results showed that the pharmacokinetic parameters (Cmax, Tmax, AUC0–t, AUC0–∞) in the plasma of UC rats were significantly different from those of normal rats, which could provide a reference for the clinical application of LZD.  相似文献   

6.
To explore whether alcohol has an effect on the pharmacokinetic behavior of phenolic acids, the main bioactive constituents in red wine, a highly sensitive and simple ultra‐fast liquid chromatography coupled with triple quadrupole mass spectrometry (UFLC–MS/MS) method was developed for simultaneous quantitation of eight phenolic acids in plasma samples. Plasma samples were extracted by liquid–liquid extraction and the chromatographic separation was achieved on a Zorbax SB‐C18 column within 7.0 min. Results of the validated method revealed that all of the calibration curves displayed good linear regression (r > 0.99). The intra‐ and inter‐day precisions of the analytes were <14.0% and accuracies ranged from ?8.5 to 7.3%. The extraction recoveries of the analytes were from 71.2 to 110.2% and the matrix effects ranged from 86.2 to 105.5%. The stability of these compounds under various conditions satisfied the requirements of biological sample measurement. The method was successfully applied to a comparative pharmacokinetic study of phenolic acids in rat plasma. For gallic acid and gentisic acid, the parameters AUC0–t and AUC0– increased remarkably (p < 0.05) after oral administration of red wine, which suggested that alcohol might enhance their absorption. This is the first report to compare the pharmacokinetic behavior of phenolic acids in red wine and dealcoholized red wine.  相似文献   

7.
Cortex Fraxini is an important traditional Chinese herbal medicine used for the treatment of gout and hyperuricemia. An efficient and rapid ultra‐performance liquid chromatography mass spectrometry method was developed and validated for simultaneous quantitation of six coumarins (aesculin, fraxin, aesculetin, fraxetin, sopoletin and 7‐hydroxycoumarin) in normal and hyperuricemic rats plasma after oral administration of Cortex Fraxini. The method could successfully be applied for pharmacokinetics studies. The pharmacokinetic behavior of six coumarins in normal and hyperuricemia rats plasma was determined. Results showed that, for some of analytes, the pharmacokinetic parameters (AUC0–t , AUC0–∞, C max, T max and CL ) were significantly different between normal and hyperuricemic rats. The different pharmacokinetic parameters might result from renal impairment or a change of metabolic enzymes in the pathological state. The pharmacokinetic study in pathological state could provide more useful information to guide the clinical use of traditional Chinese herbal medicine.  相似文献   

8.
A rapid and sensitive high‐performance liquid chromatography–mass spectrometric (HPLC‐MS) method was developed and validated for simultaneous determination of benzoylhypaconine (BHA), benzoylmesaconine (BMA), benzoylaconine (BAC) and hypaconitine (HA) in rat plasma for the first time. The analytes were separated on a Kromasil C18 column with a total running time of 11 min. The validation data demonstrated a sound feasibility for the newly developed method and it was then applied to the pharmacokinetic study of these analytes in rats. Pharmacokinetic behaviors of BHA, BMA, BAC and HA in rats were studied after oral administration of Radix Aconiti Lateralis Praeparata extract (FZ) and Dahuang Fuzi Decoction (DFD). The main parameters for the two groups of subjects were compared, and significant differences between Radix Aconiti Lateralis Praeparata extract group and Dahuang Fuzi Decoction group in calculated parameters, such as the area under the plasma concentration–time from zero to the last quantifiable time‐point (AUC0–t), the area under the plasma concentration–time curve from zero to infinity (AUC0–∞), peak plasma concentration (Cmax), half‐life of elimination (T1/2), mean retention time (MRT0–t), plasma clearance (CL), volume of distribution (Vd) and time to reach Cmax (Tmax), were found. After oral administration of DFD, the AUC0–t, AUC0–∞ and Cmax of BHA, BMA, BAC and HA decreased remarkably (p < 0.05) compared with those of the FZ extract group. Vd and CL values of BHA, BMA, BAC and HA increased, two of which showed significant difference (p < 0.05). T1/2 and MRT0–t values of BHA, BMA and BAC in the DFD group were significantly delayed compared with those of FZ extract group. Only the Tmax of HA, the toxic ingredient in FZ, delayed significantly in DFD group compared with the value of FZ group. All these pharmacokinetic parameters were statistically compared, and the rationality of the combination for DFD was clearly demonstrated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and specific LC‐MS/MS method was developed for simultaneous determination of aloe‐emodin, rhein, emodin, chrysophanol and physcion and their conjugates in rat plasma. The lower limit of quantitation of each anthraquinone was 0.020–0.040 µm . Intra‐day and inter‐day accuracies were 90.1–114.3% and the precisions were <14.6%. The matrix effects were 104.0–113.2%. The method was successfully applied to a pharmacokinetic study in rats receiving a rhubarb extract orally. The area under the concentration–time curve (AUC0–t) and peak concentration (Cmax) of free aloe‐emodin and emodin in rat plasma were much lower than those of rhein. The amounts of chrysophanol and physcion were too low to be continuously detected. After treating the plasma samples with β‐glucuronidases, each anthraquinone was detectable throughout the experimental period (36 h) and showed much higher plasma concentrations and AUC0–t. The free/total ratios of aloe‐emodin, rhein and emodin were 6.5, 49.0 and 1.7% for Cmax and 3.7, 32.5 and 1.1% for AUC0–t, respectively. The dose‐normalized AUC0–t and Cmax of the total of each anthraquinone were in the same descending order: rhein > emodin > chrysophanol > physcion > aloe‐emodin. These findings reveal phase II conjugates as the dominant in vivo existing forms of rhubarb antharquinones and warrant a further study to evaluate their contribution to the herbal activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A reliable and sensitive UPLC–MS/MS method was first established and validated for the simultaneous determination of seven active ingredients of Yaobitong capsule in rat plasma: ginsenoside Rg1, ginsenoside Rb1, osthole, tetrahydropalmatine, paeoniflorin, albiflorin, and ferulic acid. And this method was further applied for the integrated pharmacokinetic study of Yaobitong capsule in rats after oral administration. Plasma samples (100 μL) were precipitated with 300 μL of methanol using carbamazepine as internal standard. Chromatographic separation was achieved using an Aquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm), with the mobile phase consisting of 0.1% formic acid and acetonitrile. The method was validated using a good linear relationship (r ≥ 0.991), and the lower limit of quantification of the analytes ranged from 0.5 to 40 ng/mL. In the integrated pharmacokinetic study, the weight coefficient was calculated by the ratio of AUC0–∞ of each component to the total AUC0–∞ of the seven active ingredients. The integrated pharmacokinetic parameters Cmax, Tmax, and t1/2 were 81.54 ± 9.62 ng/mL, 1.00 ± 0.21 h, and 3.26 ± 1.14 h, respectively. The integration of pharmacokinetic parameters showed a shorter t1/2 because of fully considering the contribution of the characteristics of each active ingredient to the overall pharmacokinetics.  相似文献   

11.
Losartan and tripterygium glucoside tablet (TGT) are often simultaneously used for reducing urine protein excretion in clinic. However, it is unknown whether there is potential herb–drug interaction between losartan and TGT. The aim of this study was to investigate their potential herb–drug interaction, and clarify the mechanism of the effect of TGT on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. The plasma concentrations of losartan and EXP3174 were determined by LC–MS, and the main pharmacokinetic parameters were calculated. The C max, t 1/2 and AUC(0–t ) of losartan became larger after co‐administration, while the C max and AUC(0–t ) of EXP3174 became smaller, suggesting that TGT could influence the pharmacokinetics of losartan and EXP3174. The effects of TGT and its main components on the metabolic rate of losartan were further investigated in rat liver microsomes. Results indicated that TGT and its two main ingredients could decrease the metabolic rate of losartan. Therefore, it was speculated that TGT might increase the plasma concentration of losartan and decrease the concentration of EXP3174 by inhibiting the metabolism of losartan. The results could provide references for clinical medication guidance of losartan and TGT to avoid the occurrence of adverse reactions.  相似文献   

12.
A rapid high‐performance liquid chromatographic method was developed and validated for determination of tetrahydropalmatine (THP), an active component of Rhizoma Corydalis, in rat plasma. The samples were prepared using protein precipitation and separated on an Agilent XDB‐C18 column (150 × 4.6 mm, 5 µm) with the mobile phase consisting of methanol–0.1% phosphate acid solution, adjusted with triethylamine to pH 5.5 (65:35). Good linearity was found within 0.10–10.00 µg/mL of THP in rat plasma sample. The intra‐ and inter‐day precision values were less than 10%. The developed method was successfully applied to assess the pharmacokinetics of THP in spontaneously hypertensive rats (SHR) and normotensive rats. After oral administration of a single dose of THP (60 mg/kg), the maximum plasma concentrations were 6.15 ± 2.1 and 7.54 ± 2.9 µg/mL for normotensive rats and SHR, respectively. The mean values of AUC0–∞ of THP in SHR were 81.44 ± 45.0 µg h/mL, significantly higher (p < 0.05) than in normotensive rats (44.06 ± 19.6 µg h/mL). The t1/2 and MRT in SHR were much longer than that in healthy Sprague–Dawley rats, indicating slow elimination of THP in SHR. The results indicated that there are some differences in pharmacokinetics of THP in SHR and Sprague–Dawley rats and it is very important to investigate the pharmacokinetic properties of drugs in pathological conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Tetramethylpyrazine (TMP) has been widely used in the treatment of ischemic cerebrovascular disease. However, the mechanism of TMP and how to increase its bioavailability need to be further explored. In our study, an in vivo microdialysis sampling technique coupled with ultra‐performance liquid chromatography–mass spectrometry method was developed to investigate the pharmacokinetic properties of TMP and its interaction with different doses of borneol (BO) in rats. Linearity of TMP in brain and blood dialysates exhibited good linear relationships over the concentration range of 0.991–555.14 ng/mL. The specificity, linearity, accuracy, precision, matrix effect and stability were within acceptable ranges. The results demonstrated that BO had a marked impact on the pharmacokinetic properties of TMP. After co‐administration, the areas under the concentration–time curve (AUC) of TMP in brain and blood were significantly increased. Meanwhile, the peak concentration of TMP in brain was also enhanced. The AUCBrain/AUCBlood of TMP, increased from 44% to 56 and 60.8% after co‐administration with BO (15 and 30 mg/kg). The pharmacodynamic results showed that TMP co‐administration with BO enhanced the cerebral blood flow during the period of ischemia and reduced the infarct volume. Overall, it might be an effective way to treat stroke to use TMP co‐administered with BO.  相似文献   

14.
15.
Sini decoction (SND) is an important traditional Chinese multiherbal formula, which is widely used to treat cardiovascular disease. Acontium carmichaeli (AC) is a leading herb in SND, whose main components are monoester‐diterpenoid alkaloids (MDAs). The aim of this study is to compare the pharmacokinetics of three MDAs in rat plasma after oral administration of AC extract and its compatibility with other herbal medicines in SND. A sensitive, accurate and specific LC‐MS/MS method was developed to determine the contents of three MDAs in rat plasma. Male Sprague–Dawley rats were randomly assigned to four groups: AC, AC + ZO, AC + GU and SND groups. There were significant differences in the pharmacokinetic parameters (Cmax, Tmax, t1/2, AUC(0–24), MRT and CL). Compared with the AC group, Cmax, AUC(0–24) and CL of three MDAs increased and t1/2 decreased in AC + ZO, AC + GU and SND groups. Little changed in the AC + GU group in comparison with AC + ZO group, which indicated that other ingredients in ZO may promote the absorption rate and accelerate excretion rate of MDAs. The results could be helpful for revealing the compatibility mechanism of Chinese multiherbal medicine and providing clinical medication guidance on AC and its compatibility with other herbal medicines in SND. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Zengmian Yiliu (ZMYL), a traditional Chinese formula, is designed to improve clinical efficacy and reduce adverse effects in combination with cisplatin in ovarian cancer chemotherapy. In ZMYL, Radix Paeoniae Alba (RPA, made from root of Paeonia lactiflora Pall.) acts as an adjunctive drug in cancer treatment by ameliorating side effects induced by radio‐ and chemotherapy. The pharmacokinetics differences between isomer albiflorin and paeoniflorin, the main components of RPA, after oral administration decoction of single‐herb RPA and ZMYL were compared using a sensitive and accurate UPLC‐MS/MS. The results indicate that there are statistically significant differences between the pharmacokinetic parameters: decreasing area under the plasma concentration–time curve (AUC), maximum concentration (Cmax), elimination rate constant (Ke) and increasing apparent volume of distribution (Vd) and clearance (CL) for albiflorin, increasing distribution half‐life (T1/2d) and decreasing elimination half‐life (T1/2e), distribution rate constant (Kd) and absorption rate constant (Ka) for paeoniflorin in the ZMYL group compared with the single‐herb RPA group. In comparison with albiflorin, the pharmacokinetic parameters of paeoniflorin included significantly increasing mean residence time (MRT) and Vd, decreasing CL and Ke in the single‐herb RPA group and increasing MRT and T1/2d and decreasing CL, Ke and Kd in the ZMYL group. Both paeoniflorin and albiflorin are more likely, as the main active ingredients in RPA and ZMYL, to play a variety of pharmacological effects, and herb–herb interactions occur, resulting in different pharmacokinetics of albiflorin and paeoniflorin in RPA and ZMYL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Dahuang‐mudan decoction (DMD) has been widely used for disease treatment in China for 1700 years. The formula consists of Rhubarb, moutan bark, Prunus persica, wax gourd kernel and mirabilite, which have been well studied by multidisciplinary approaches. However, the role of the mineral mirabilite in DMD is unclear. The objective of this study was to investigate the effects of mirabilite on the absorption and pharmacokinetics of the ingredients in DMD. The constituents were identified in DMD extract and the plasma of mirabilite–DMD (MDMD, 50 g kg?1) treated rats and nonmirabilite–DMD (NMDMD, 50 g kg?1) treated rats. The plasma was also used to investigate the effects of mirabilite on the pharmacokinetics of active ingredients in DMD using a new validated UPLC–MS/MS method. The results showed that 63 compounds were identified in the extract of DMD, 27 and 22 of which were found in the plasmas of MDMD‐ and NMDMD‐treated rats, respectively. Furthermore, the results of a pharmacokinetic study suggested that mirabilite influenced the absorption of the five constituents by decreasing the absorption of emodin and rhein while increasing the absorption of aloe‐emodin, paeoniflorin and amygdalin; the pharmacokinetic parameters, including the Tmax, Cmax, AUC0–t, MRT0–t, CLz and t1/2 of five constituents, significantly changed in MDMD‐treated rats compared with the NMDMD. The method validation for selectivity, precision, accuracy, matrix effect, recovery and stability met the acceptance criteria. These findings uncover the roles of mirabilite in DMD and demonstrate the application of scientific principles to the study of DMD in human health care.  相似文献   

18.
Carboxylesterase and UDP‐glucuronosyltransferase‐mediated metabolism of irinotecan (CPT‐11) has long been proposed to be responsible for its anti‐tumor activity and toxicity, like delayed‐onset diarrhea. However, recent studies failed to gain more comprehensive in vivo and in vitro pharmacokinetic profiles of irinotecan. Herein, we use rat plasma, human liver microsomes and immortalized HepG2 cell as experimental subjects to describe a sensitive and versatile UHPLC–MS/MS method for simultaneously quantifying CPT‐11 and its metabolites, including SN‐38 and SN‐38G. The method was applied to investigate the pharmacokinetic and metabolic behavior of CPT‐11 in the biological samples. Calibration curves for all bio‐matrices showed acceptable linearity (r2 > 0.99). The intra‐ and inter‐day precisions (RSD, %) were within 15% and the excellent accuracy (RE) was between 2.96 and 14.12%. In addition, the specificity, matrix effect and extraction recovery all met the requirements of biological sample analysis. We successfully applied this method to investigate the pharmacokinetics of irinotecan in various biological samples, mediated by carboxylesterase and UDP‐glucuronosyltransferase. This method could be employed in monitoring the metabolic status and clinical efficacy of irinotecan in the future.  相似文献   

19.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号