首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
AdipoRon is an orally active adiponectin receptor agonist. The aim of this study was to characterize the metabolites of AdipoRon in rat and human liver microsomes using ultra‐high performance liquid chromatography combined with Q‐Exactive Orbitrap tandem mass spectrometry (UPLC‐Q‐Exactive‐Orbitrap‐MS) together with data processing techniques including extracted ion chromatograms and a mass defect filter. AdipoRon (10 μm ) was incubated with liver microsomes in the presence of NADPH and this resulted in a total of 11 metabolites being detected. The identities of these metabolites were characterized by comparing their accurate masses and fragment ions as well as their retention times with those of AdipoRon using MetWorks software. Metabolites M1–M3, M6, and M8–M11 were identified for the first time. Metabolite M4, the major metabolite both in rat and human liver microsomes, was further confirmed using the reference standard. Our results revealed that the metabolic pathways of AdipoRon in liver microsomes were N‐dealkylation (M2), hydroxylation (M, M5–M9), carbonyl reduction (M4) and the formation of amide (M10 and M11). Our results provide valuable information about the in vitro metabolism of AdipoRon, which would be helpful for us to understand the mechanism of the elimination of AdipoRon and, in turn, its effectiveness and toxicity.  相似文献   

3.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

4.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
3‐Bromomethcathinone (3‐BMC) and 3‐Fluoromethcathinone (3‐FMC) are two new designer drugs, which were seized in Israel during 2009 and had also appeared on the illicit drug market in Germany. These two compounds were sold via the Internet as so‐called “bath salts” or “plant feeders.” The aim of the present study was to identify for the first time the 3‐BMC and 3‐FMC Phase I and II metabolites in rat urine and human liver microsomes using GC–MS and LC–high‐resolution MS (HR‐MS) and to test for their detectability by established urine screening approaches using GC–MS or LC–MS. Furthermore, the human cytochrome‐P450 (CYP) isoenzymes responsible for the main metabolic steps were studied to highlight possible risks of consumption due to drug–drug interaction or genetic variations. For the first aim, rat urine samples were extracted after and without enzymatic cleavage of conjugates. The metabolites were separated and identified by GC–MS and by LC–HR‐MS. The main metabolic steps were N‐demethylation, reduction of the keto group to the corresponding alcohol, hydroxylation of the aromatic system and combinations of these steps. The elemental composition of the metabolites identified by GC–MS could be confirmed by LC–HR‐MS. Furthermore, corresponding Phase II metabolites were identified using the LC–HR‐MS approach. For both compounds, detection in rat urine was possible within the authors' systematic toxicological analysis using both GC–MS and LC–MSn after a suspected recreational users dose. Following CYP enzyme kinetic studies, CYP2B6 was the most relevant enzyme for both the N‐demethylation of 3‐BMC and 3‐FMC after in vitro–in vivo extrapolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Gentiopicroside (GPS), the main bioactive component in Gentiana scabra Bge., has attracted our attention owing to its high bioactivity, especially the treatment of hepatobiliary disorders. The aglycone form of GPS, a typical secoiridoid glycoside, is considered to be more readily absorbed than its parent drug. This study aimed to identify and characterize the metabolites after GPS incubated with β‐glucosidase in buffer solution at 37°C. Samples of biotransformed solution were collected and analyzed by ultraperformance liquid chromatography (UPLC)/quadrupole–time‐of‐flight mass spectrometry (Q‐TOF MS). A total of four metabolites were detected: two were isolated and elucidated by preparative‐HPLC and NMR techniques, and one of those four is reported for the first time. The mass spectral fragmentation pattern and accurate masses of metabolites were established on the basis of UPLC/Q‐TOF MS analysis. Structure elucidation of metabolites was achieved by comparing their fragmentation pattern with that of the parent drug. A fairly possible metabolic pathway of GPS by β‐glucosidase was proposed. The hepatoprotective activities of metabolites M1 and M2 were investigated and the results showed that their hepatoprotective activities were higher than that of parent drug. Our results provided a meaningful basis for discovering lead compounds from biotransformation related to G. scabra Bge. in traditional Chinese medicine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Complementary and alternative medicines (CAM) can affect the pharmacokinetics of anticancer drugs by interacting with the metabolizing enzyme cytochrome P450 (CYP) 3A4. To evaluate changes in the activity of CYP3A4 in patients, levels of 1‐hydroxymidazolam in plasma are often determined with liquid chromatography–quadrupole mass spectrometry (LC‐MS/MS). However, validated LC‐MS/MS methods to determine in vitro CYP3A4 inhibition in human liver microsomes are scarce and not optimized for evaluating CYP3A4 inhibition by CAM. The latter is necessary because CAM are often complex mixtures of numerous compounds that can interfere with the selective measurement of 1‐hydroxymidazolam. Therefore, the aim was to validate and optimize an LC‐MS/MS method for the adequate determination of CYP3A4 inhibition by CAM in human liver microsomes. After incubation of human liver microsomes with midazolam, liquid–liquid extraction with tert‐butyl methyl ether was applied and dried samples were reconstituted in 50% methanol. These samples were injected onto a reversed‐phase chromatography consisting of a Zorbax Extend‐C18 column (2.1 × 150 mm, 5.0 µm particle size), connected to a triple quadrupole mass spectrometer with electrospray ionization. The described LC‐MS/MS method was validated over linear range of 1.0–500 nm for 1‐hydroxymidazolam. The results revealed good inter‐assay accuracy (≥85% and ≤115%) and within‐day and between‐day precisions (coefficient of variation ≤ 4.43%). Furthermore, the applicability of this assay for the determination of CYP3A4 inhibition in complex matrix mixtures was successfully demonstrated in an in vitro experiment in which CYP3A4 inhibition by known CAM (β‐carotene, green tea, milk thistle and St. John's wort) was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Cnidilin is an active natural furocoumarin ingredient originating from well‐known traditional Chinese medicine Radix Angelicae Dahuricae . In the present study, an efficient approach was developed for the screening and identification of cnidilin metabolites using ultra‐high‐performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. In this approach, an on‐line data acquisition method multiple mass defect filter combined with dynamic background subtraction was developed to trace all probable metabolites. Based on this analytical strategy, a total of 24 metabolites of cnidilin were detected in human liver microsomal incubation samples and the metabolic pathways were proposed. The results indicated that oxidation was the main biotransformation route for cnidilin in human liver microsomes. In addition, the specific cytochrome P450 (CYP) enzymes involved in the metabolism of cnidilin were identified using chemical inhibition and CYP recombinant enzymes. The results showed that CYP1A2 and CYP3A4 might be the major enzymes involved in the metabolism of cnidilin in human liver microsomes. The relationship between cnidilin and the CYP450 enzymes could provide us a theoretical basis of the pharmacological mechanism.  相似文献   

9.
In this study the comparison of human liver microsomes in in vitro incubation as well as ZnO‐ and TiO2‐assisted photocatalytic degradation of clozapine as a mimicking method of phase I metabolism transformation was performed. Based on reversed‐phase UHPLC separation and high‐resolution MS/MS data, eight transformation products were identified and seven of them were found to be hepatic metabolites of the parent compound. The multivariate chemometric comparison of the obtained results shows ZnO‐assisted photocatalysis to be a more suitable approach to phase I metabolism simulation. The photocatalytic experiments demonstrated that the disappearance of clozapine followed pseudo‐zero order kinetics.  相似文献   

10.
Piplartine, an alkaloid produced by plants in the genus Piper , displays promising anticancer activity. Understanding the gas‐phase fragmentation of piplartine by electrospray ionization tandem mass spectrometry can be a useful tool to characterize biotransformed compounds produced by in vitro and in vivo metabolism studies. As part of our efforts to understand natural product fragmentation in electrospray ionization tandem mass spectrometry, the gas‐phase fragmentation of piplartine and its two metabolites 3,4‐dihydropiplartine and 8,9‐dihydropiplartine, produced by the endophytic fungus Penicillium crustosum VR4 biotransformation, were systematically investigated. Proposed fragmentation reactions were supported by ESI‐MS/MS data and computational thermochemistry. Cleavage of the C‐7 and N‐amide bond, followed by the formation of an acylium ion, were characteristic fragmentation reactions of piplartine and its analogs. The production of the acylium ion was followed by three consecutive and competitive reactions that involved methyl and methoxyl radical eliminations and neutral CO elimination, followed by the formation of a four‐member ring with a stabilized tertiary carbocation. The absence of a double bond between carbons C‐8 and C‐9 in 8,9‐dihydropiplartine destabilized the acylium ion and resulted in a fragmentation pathway not observed for piplartine and 3,4‐dihydropiplartine. These results contribute to the further understanding of alkaloid gas‐phase fragmentation and the future identification of piplartine metabolites and analogs using tandem mass spectrometry techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Withaferin A (WA) is one of the major bioactive steroidal lactones with extensive pharmacological activities present in the plant Withania somnifera. The absolute oral bioavailability of WA remains unknown and human‐related in vitro data are not available. Therefore, in the present study, the absolute oral bioavailability of WA in male rats and the in vitro screening of absorption factors by Q‐trap and LC–MS/MS analysis were conducted to explore possible clinical properties of WA. The developed and validated analytical methods were successfully applied to the pharmacokinetic studies and in vitro measurement of WA. The oral bioavailability was determined to be 32.4 ± 4.8% based on intravenous (5 mg/kg) and oral (10 mg/kg) administrations of WA in male rats. The in vitro results showed that WA could be easily transported across Caco‐2 cells and WA did not show as a substrate for P‐glycoprotein. Moreover, the stability of WA was similar between male rat and human in simulated gastric fluid (stable), in intestinal microflora solution (slow decrease) and in liver microsomes (rapid depletion, with a half‐life of 5.6 min). As such, the first‐pass metabolism of WA was further verified by rat intestine‐liver in situ perfusion, revealing that WA rapidly decreased and 27.1% remained within 1 h, while the content of three major metabolites (M1, M4, M5) identified by Q‐trap increased. This perfusion result is consistent with the oral bioavailability results in vivo. The first‐pass metabolism of WA might be the main barrier in achieving good oral bioavailability in male rats and it is predicted to be similar in humans. This study may hold clinical significance.  相似文献   

12.
The present study reports the in vivo and in vitro identification and characterization of metabolites of fluvastatin, the 3‐hydroxy‐3‐methyl‐glutaryl‐coenzyme A reductase inhibitor, using liquid chromatography–mass spectrometry (LC–MS). In vitro studies were conducted by incubating the drug with human liver microsomes and rat liver microsomes. In vivo studies were carried out by administration of the drug in the form of suspension to the Sprague–Dawley rats followed by collection of urine, faeces and blood at different time points up to 24 h. Further, samples were prepared by optimized sample preparation method, which includes freeze liquid extraction, protein precipitation and solid phase extraction. The extracted and concentrated samples were analysed using ultrahigh‐performance liquid chromatography–quadruple time‐of‐flight tandem mass spectrometry. A total of 15 metabolites were observed in urine, which includes hydroxyl, sulphated, desisopropyl, dehydrogenated, dehydroxylated and glucuronide metabolites. A few of the metabolites were also present in faeces and plasma samples. In in vitro studies, a few metabolites were observed that were also present in in vivo samples. All the metabolites were characterized using ultrahigh‐performance liquid chromatography–quadruple time‐of‐flight tandem mass spectrometry in combination with accurate mass measurement. Finally, in silico toxicity studies indicated that some of the metabolites show or possess carcinogenicity and skin sensitization. Several metabolites that were identified in rats are proposed to have toxicological significance on the basis of in silico evaluation. However, these metabolites are of no human relevance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Ilaprazole is a new proton pump inhibitor designed for the treatment of gastric ulcers, and limited data is available on the metabolism of the drug. In this article, the structural elucidation of urinary metabolites of ilaprazole in human was described by HPLC‐ESI‐MS/MS and stopped‐flow HPLC‐NMR experiments. Urinary samples were precipitated by sodium carbonate solution, and then extracted by liquid–liquid extraction after adding ammonium acetate buffer solution. The enriched sample was separated using a C18 reversed‐phase column with the mobile phase composed of acetonitrile and 0.05 mol/L ammonium acetate buffer solution in a gradient solution, and then directly coupled to ESI‐MS/MS detection in an on‐line mode or 1H‐NMR (500 MHz) spectroscopic detection in a stopped‐flow mode. As a result, four sulfide metabolites, ilaprazole sulfide (M1), 12‐hydroxy‐ilaprazole sulfide (M2), 11,12‐dihydroxy‐ilaprazole sulfide (M3) and ilaprazole sulfide A (M4), were identified by comparing their MS/MS and NMR data with those of the parent drug and available standard compounds. The main biotransformation reactions of ilaprazole were reduction and the aromatic hydroxylation of the parent drug and its relative metabolites. The result testified that HPLC‐ESI‐MS/MS and HPLC‐NMR could be widely applied in detection and identification of novel metabolites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, tamoxifen metabolic profiles were investigated carefully. Tamoxifen was administered to two healthy male volunteers and one female patient suffering from breast cancer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry using full scan and targeted MS/MS techniques with accurate mass measurement. Chromatographic peaks for potential metabolites were selected by using the theoretical [M + H]+ as precursor ion in full‐scan experiment and m/z 72, 58 or 44 as characteristic product ions for N,N‐dimethyl, N‐desmethyl and N,N‐didesmethyl metabolites in targeted MS/MS experiment, respectively. Tamoxifen and 37 metabolites were detected in extraction study samples. Chemical structures of seven unreported metabolites were elucidated particularly on the basis of fragmentation patterns observed for these metabolites. Several metabolic pathways containing mono‐ and di‐hydroxylation, methoxylation, N‐desmethylation, N,N‐didesmethylation, oxidation and combinations were suggested. All the metabolites were detected in the urine samples up to 1 week. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The metabolic profile of polar (methanol) and non‐polar (hexane) extracts of Curcuma domestica, a widely used medicinal plant, was established using various different analytical techniques, including GC‐FID, GC‐MS, HR‐GC‐MS and analytical HPLC‐ESI‐MS/MS by means of LTQ‐Orbitrap technology. The major non‐volatile curcuminoids curcumin, demethoxycurcumin and bisdemethoxycurcumin were identified when their chromatographic and precursor ion masses were compared with those of authentic standard compounds. In this paper we describe for the first time a GC/MS‐based method for metabolic profiling of the hydrophilic extract. We also identified 61 polar metabolites as TMS derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Bulleyaconitine A (BLA) from Aconitum bulleyanum plants is usually used as anti‐inflammatory drug in some Asian countries. It has a variety of bioactivities, and at the same time some toxicities. Since the bioactivities and toxicities of BLA are closely related to its metabolism, the metabolites and the metabolic pathways of BLA in rat liver microsomes were investigated by HPLC–MSn. In this research, the 12 metabolites of BLA were identified according to the results of HPLC‐MSn data and the relevant literature. The results showed that there are multiple metabolites of BLA in rat liver microsomes, including demethylation, deacetylation, dehydrogenation deacetylation and hydroxylation. The major metabolic pathways of BLA in rat liver microsomes were clarified by HPLC‐MS combined with specific inhibitors of CYP450 isoforms. As a result, CYP3A and 2C were found to be the principal CYP isoforms contributing to the metabolism of BLA. Moreover, CYP2D6 and 2E1 are also more important CYP isoforms for the metabolism of BLA. While CYP1A2 only affected the formation rate of M11, its effect on the metabolism of BLA is very small. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Substance P (SP) belongs to the tachykinin family and plays an essential role in pain transmission and in neurogenic inflammation. It can be detected in the central and peripheral nervous systems. The objectives of this study were to establish SP metabolic stability in liver microsomes in three species (rat, mouse and human), and identify and characterize SP metabolites by LC‐MS/MS. Endogenous peptide metabolism is not well documented and this is particularly true for neuropeptides participating in neurogenic inflammation. In vitro, T1/2 results in pooled liver microsomes were 9.2, 5.6 and 18.6 min for rat, mouse and human liver microsomes, respectively. Five major SP metabolites were identified and quantified, including C‐terminal SP fragments SP3–11, SP5–11, SP6–11, SP8–11 as well as N‐terminal fragment SP1–7. The results suggest significant differences between species in SP metabolite concentrations. Consequently, the metabolic profile of each species is distinctive and may have a significant impact on biomolecular mechanisms involved in specific pathophysiological changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Belamcanda chinensis has been extensively used as antibechic, expectorant and anti‐inflammatory agent in traditional medicine. Irisflorentin is one of the major active ingredients. However, little is known about the metabolism of irisflorentin so far. In this work, rat liver microsomes (RLMs) were used to investigate the metabolism of this compound for the first time. Seven metabolites were detected. Five of them were identified as 6,7‐dihydroxy‐5,3′,4′,5′‐tetramethoxy isoflavone (M1), irigenin (M2), 5,7,4′‐trihydroxy‐6,3′,5′‐trimethoxy isoflavone (M3), 6,7,4′‐trihydroxy‐5,3′,5′‐trimethoxy isoflavone (M4) and 6,7,5′‐trihydroxy‐5,3′,4′‐trimethoxy isoflavone (M5) by means of NMR and/or HPLC‐ESI‐MS. The structures of M6 and M7 were not elucidated because they produced no MS signals. The predominant metabolite M1 was noted to be a new compound. Interestingly, it was found to possess anticancer activity much higher than the parent compound. The enzymatic kinetic parameters of M1 revealed a sigmoidal profile, with Vmax = 12.02 μm /mg protein/min, Km = 37.24 μm , CLint = 0.32 μL/mg protein/min and h = 1.48, indicating the positive cooperation. For the first time in this work, a new metabolite of irisflorentin was found to demonstrate a much higher biological activity than its parent compound, suggesting a new avenue for the development of drugs from B. chinensis, which was also applicable for other herbal plants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Galanthamine‐type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC‐EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high‐resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC‐MS/MS) and accurate mass measurements (GC‐HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC‐MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine‐N‐oxide and N‐formylnorgalanthamine, the galanthamine‐type compounds showed abundant [M]+. and [M‐H]+ ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine‐type alkaloids, including 3‐O‐(2′‐butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC‐MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号