首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
乙酰丙酮铁催化丙交酯开环聚合的研究   总被引:7,自引:0,他引:7  
以乙酰丙酮铁 [Fe(acac) 3]为催化剂进行D ,L 丙交酯的开环聚合及在聚乙二醇 (PEG)存在下的开环共聚 ,研究了催化剂用量、反应温度和反应时间对聚合反应的影响以及PEG用量对共聚反应的影响 ,并探讨了丙交酯开环聚合机理 .结果表明 ,Fe(acac) 3是按配位 插入机理催化丙交酯开环聚合的 ;在本文的聚合条件下 ,大部分聚合的单体转化率都达 90 %以上 ,聚合产物的粘均分子量最高可达 6 6 0 0 0 ,均显示出较好的催化性能 .在PEG存在下 ,PEG作为引发剂参入了丙交酯的开环聚合 ,D ,L 丙交酯是沿着PEG分子两端开环聚合的 ,分子链的链端结构是以羟基为端基的乳酰基结构单元 ,Fe(acac) 3有促进PEG参与聚合成酯的作用 .  相似文献   

2.
醇铁化合物引发丙交酯开环聚合的研究   总被引:1,自引:0,他引:1  
分别以乙醇铁、正丙醇铁、异丙醇铁、正丁醇铁为引发剂进行D,L-丙交酯和L-丙交酯的本体开环聚合,研究了在130℃的聚合温度下引发剂用量和聚合时间对聚合反应的影响.结果表明这些醇铁化合物对丙交酯开环聚合都有较好的引发作用;聚合36h,单体转化率可达90%以上.单体转化率在引发剂/单体摩尔比为1/1000时最高,然后随引发剂用量增加和聚合时间延长而降低.乙醇铁表现出最高的引发活性,聚合产物的相对粘均分子量最高可达7·28×104[聚(D,L-丙交酯)]和19·00×104[聚(L-丙交酯)].醇盐配体对聚合产物的分子量和分子量分布影响显著,随醇铁配体体积增大,聚合产物的分子量逐渐降低,分子量分布也逐渐加宽.1H和13C-NMR分析表明醇铁对L-丙交酯的开环聚合没有发生消旋化,对D,L-丙交酯的开环聚合有一定的等规加成选择性.MALDI-TOF MS分析指出D,L-丙交酯在开环聚合过程中发生了分子间的酯交换反应,用13C-NMR评价了各醇铁引发体系在聚合过程中的酯交换程度.但基于谱峰分辨原因,醇铁配体对立构加成选择性和酯交换的影响的规律性不明显.  相似文献   

3.
赵衡柱  杨青芳  艾莉  马强 《合成化学》2005,13(4):368-371
以辛酸亚锡为催化剂催化丙交酯开环聚合DL-乳酸(PDLLA)。研究了影响PDLLA分子量的因素包括丙交酯单体的纯度、催化剂的浓度、反应温度、反应时间及真空度等。用DSC,TGA分析了不同分子量PDLLA的警警化转变和热失重。结果表明,PDLLA是热不稳定聚合物,残留的单体、催化剂及低聚物是影响PDLLA热稳定性的因素,除去其中残留的单体、催化剂及低聚物可以提高PDLLA的热稳定性。  相似文献   

4.
随着国家减塑令的发布,开发聚乳酸(PLA)等生物可降解材料逐渐成为热门话题.对合成聚乳酸的不同方法进行了讨论.丙交酯开环聚合法已成为获得高分子量聚乳酸的最常用方法.因此,重点介绍了用于丙交酯开环聚合的催化剂设计,并阐述了聚合的机理,希望能为设计开发低毒性、高选择性的催化体系指明方向.  相似文献   

5.
乙酰基丙酮络合物催化合成聚乳酸   总被引:10,自引:0,他引:10  
以钕、钇、锌、铁、钴、镍六种乙酰基丙酮盐M(AcAc)n成功地催化丙交酯开环聚合成聚乳酸。详细研究了上述乙酰基丙酮盐催化剂品种及其与单体摩尔比[M(AcAc)n]/[LA]、温度和时间对聚合反应的影响。结果表明,使用这些催化剂都能得到高于90%的高聚合转化率;而稀土催化剂在聚合转化率和聚乳酸分子量方面,均显示更好的催化性能;过高的聚合温度和过长的聚合时间会导致聚乳酸的分子量下降。X-衍射研究表明,以Nd(AcAc)3催化合成的聚乳酸为非晶聚合物。  相似文献   

6.
稀土配位催化合成聚乳酸   总被引:18,自引:0,他引:18  
本文开发了合成聚乳的一类新型催化剂, 它是由稀土化合物-三烷基铝-水组的配位催化剂。试验表明稀土配位催化剂可以使丙交酯在甲苯溶液中以高转化率聚合, 得到分子量可控的聚乳酸。并研究了稀土元素种类、不同配位基团及聚合条件变化对丙交酯开环聚合的影响。  相似文献   

7.
聚乳酸是一类以可再生资源为原料的具有生物可降解性和生物相容性的热塑性材料,已被广泛应用于生物医学、制药和环境等领域.聚乳酸通常是由单体丙交酯开环聚合得到.丙交酯单体有三种旋光异构体,分别为左旋,右旋和内消旋.由于聚合物链段的立体构型对材料的热力学和力学性能起着决定性的作用,因此制备对丙交酯不同立体选择性的催化剂是一个重要的研究课题.目前在丙交酯开环聚合反应中具有良好立体选择性的单活性点金属配合物的设计和合成方面已经取得了显著的进展.本文基于本课题组的研究工作,讨论了金属配合物的金属中心种类、配体结构等对丙交酯立体选择性聚合的影响.  相似文献   

8.
脂肪酸聚酯聚乳酸具有生物降解性和生物相容性,可用于生物医学、药物和环境材料等领域。本文综述了丙交酯聚合研究的最新进展,突出强调了催化活性高、能够控制聚合物立构规整性的丙交酯开环聚合催化剂。由于选用的催化剂和丙交酯单体的不同,聚乳酸有等规、无规、杂同、间规以及立体嵌段等不同的微观结构,不同微观结构的聚乳酸的力学、物理和降解性能不同。本文重点列举了单活性中心的铝、稀土金属和环境友好型铁、锌、镁以及不含金属的有机催化剂在外消旋丙交酯的立体选择开环聚合方面的最新进展,强调低毒性、生物相容性好的催化剂是目前研究的重点。最后指出,随着环境友好聚乳酸材料的合成和应用的增加,开发单活性中心以及无金属催化剂研究丙交酯立体选择开环聚合是今后研究的一个重要的课题。  相似文献   

9.
溶液法星型聚乳酸的合成与表征   总被引:1,自引:0,他引:1  
探讨了采用辛酸亚锡为催化剂,多元醇及多元酸为引发剂,以溶液法制备星型聚乳酸的可行性,研究了不同引发剂对产物分子量的影响.采用核磁共振及DSC对产物进行了表征,结果表明:以溶液法合成星型聚乳酸是可行的,但与丙交酯开环聚合制备星型聚乳酸的方法相比,溶液法在产物结构和分子量控制上并不十分有效,由于反应受到多官能团核引发剂空间位阻和反应概率的影响,聚乳酸产物的结构除星型结构外也同时存在大量的线型结构.  相似文献   

10.
二醋酸纤维素接枝丙交酯共聚物的合成与表征   总被引:1,自引:0,他引:1  
以二醋酸纤维素为接枝骨架,在辛酸亚锡的催化下,通过L-丙交酯的开环接枝聚合反应,合成了二醋酸纤维素和聚丙交酯接枝共聚物(CDA-g-PLA),并采用GPC、FTIR、1H-NMR和DSC对接枝共聚物进行表征.研究了原料质量比、催化剂用量、反应时间、反应温度对单体转化率(C%)、接枝率(G%)的影响.结果表明:反应温度150℃,单体丙交酯与二醋酸纤维素质量比为4:1,反应时间30min,催化剂辛酸亚锡与二醋酸纤维素的质量比为1%时,产物的接枝率较高.  相似文献   

11.
Poly (lactic acid) (PLA) was synthesized using d , l ‐lactide monomer and zinc oxide (ZnO) pillared organic saponite as the green catalyst, through ring‐opening polymerization. The effects of stoichiometry of catalyst and polymerization conditions on molecular weight of PLA were evaluated by orthogonal experiment. The optimum polymerization parameters were: 0.5 wt% ZnO pillared organic saponite and reaction conditions of 170°C for 20 hr. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy confirmed the PLA structure. Gel permeation chromatography showed that the average molecular weight of PLA was 48,442 g/mol, and its polydispersity index was 1.875. Differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy showed that ZnO pillared organic saponite improved the crystallinity of PLA. Thermal gravimetric analysis showed improved thermal stability of PLA because of ZnO pillared organic saponite. Thermal decomposition kinetics of PLA/ZnO pillared organic saponite nanocomposites was also studied. The activation energies (Ea) for thermal degradation of PLA and PLA/ZnO pillared organic saponite nanocomposites were evaluated by the Kissinger and Ozawa methods, which demonstrated that ZnO pillared organic saponite enhanced Ea of thermal degradation of PLA and significantly improved its thermal stability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The chemical recycling of poly(lactide) was investigated based on depolymerization and polymerization processes. Using methanol as depolymerization reagent and zinc salts as catalyst, poly(lactide) was depolymerized to methyl lactate applying microwave heating. An excellent performance was observed for zinc(II) acetate with turnover frequencies of up to 45000 h−1. In a second step the monomer methyl lactate was converted to (pre)poly(lactide) in the presence of catalytic amounts of zinc salts. Here zinc(II) triflate revealed excellent performance for the polymerization process (yield: 91 %, Mn ∼8970 g/mol). Moreover, the (pre)poly(lactide) was depolymerized to lactide, the industrial relevant molecule for accessing high molecular weight poly(lactide), using zinc(II) acetate as catalyst.  相似文献   

13.
Phosphorylated graphene oxide (PGO) was prepared by using phosphoric acid as functional reagent, and PGO was grafted with poly(L‐lactide) (PGO‐PLLA) by ring‐opening polymerization of L‐lactide as monomer under nano‐ZnO catalyst. The results of the orthogonal analysis showed the optimum reaction conditions to be as follows: the reaction temperature of 170°C, reaction time of 14 hours, the mass ratio of PGO of 10 wt%, and the mass of nano‐ZnO of 1 wt%. PGO‐PLLA was characterized by fourier transform infrared spectroscopy, gel permeation chromatography, and X‐ray photoelectron spectroscopy, which demonstrated that the PLLA molecular chains were successfully grafted onto the surface of PGO. Poly (lactic acid)/PGO‐PLLA nanocomposites (PLA/PGO‐PLLA) were prepared by melt intercalation. Mechanical test and fracture scanning electron microscopy showed that PGO‐PLLA (0.3 wt%) improved impact strength of PLA by 52.19%, which resulted in ductile fractures surface of PLA/PGO‐PLLA. Microcalorimetry and thermal degradation kinetics proved that PGO‐PLLA improved the thermal stability of PLA. Polarized optical microscopy and differential scanning calorimetry confirmed that PGO‐PLLA increased crystallization rate and spherulite kernel density of PLA, and crystallinity of PLA/PGO‐PLLA reached to 22.05%. Rheological behavior proved that PGO‐PLLA increased the self‐lubricity of PLA. Enzymatic degradation results illustrated that PGO‐PLLA had some inhibition for the biodegradability of PLA based nanocomposites.  相似文献   

14.
Polylactide (PLA) homo‐ and stereocopolymers containing 100, 98, 96, 94, and 92% L ‐lactyl units, respectively, were synthesized by ring opening polymerization of L ‐lactide and DL ‐Lactide, using zinc lactate as catalyst. Differential scanning calorimetric analysis measurements show that incorporation of D ‐lactyl units leads to decrease of the crystallization rate of the copolymers. However, the crystallization mechanism and the amount of crystallizable fraction are not affected. The enzymatic degradation was performed at 37 °C in a pH 8.6 Tris buffer containing proteinase K. Two distinct morphologies were obtained by melt crystallization for PLA films with ca. 80 μm of thickness. It is confirmed that proteinase K can degrade both the free and confined amorphous regions. Lamella stacks in spherulites retain their orientation during enzymatic degradation. PLA crystal morphologies are affected by the content of D ‐lactyl units. Factors such as the nucleus location and the D ‐lactyl units' exclusion as amorphous fraction were considered to elucidate the observed PLA spherulite morphologies. Infrared spectroscopy and mass loss measurements were also combined to better understand the degradation behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 959–970, 2008  相似文献   

15.
An investigation of the cooperative effects of plasticizer (PEG) and nucleation agent (TMC‐306) on stereocomplex‐type poly(lactide acid) formation and crystallization behaviors between poly(L‐lactide acid) (PLLA) and poly(D‐lactide acid) (PDLA) was conducted. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) analysis indicated that exclusive stereocomplex‐type poly(lactide acid) (sc‐PLA) crystallites without any homocrystallites poly(lactide acid) (hc‐PLA) did form by incorporation of PEG, TMC‐306, or both at a processing temperature higher than the melting temperature of sc‐PLA (around 230°C). The non‐isothermal and isothermal crystallization kinetics showed that PEG and TMC‐306 could independently accelerate the crystallization rate of sc‐PLA. The crystallization peak temperature and crystallization rate of sc‐PLA were significantly improved by the presence of PEG and TMC‐306. The influence of PEG and TMC‐306 on the morphologies of sc‐PLA was also investigated using polarized optical microscopy (POM). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

17.
Two Bis-β-diketonate zinc (II) complexes were synthesized using 1-(thiophen-2-yl)butane-1,3-dione and 1-(thiophen-2-yl)-3-(thiophen-3-yl)propane-1,3-dione as ligands. By electropolymerization of their thiophenyl groups, the metallopolymers deposited on FTO electrodes were obtained. The main objective was to study the reactivity of these compounds as ROP catalysts for PLA synthesis, using directly the zinc complexes (homogeneous catalysis) and also the modified electrodes with metallopolymers (heterogeneous catalysis). The homogeneous catalysis studies allowed the optimization of the polymerization conditions, such as reaction time, catalyst concentration, and the use of benzyl alcohol as cocatalyst, as well as their influence on the conversion rate, average molecular weight and polydispersity of PLA, using rac-LA and L-LA as monomers. Also, the effect on tacticity and thermal properties were discussed. Finally, the ROP studies using immersed modified electrodes in the polymerization medium were carried out under optimized experimental conditions. These tests were positive for one of the studied compounds, reaching conversions of up to 67%. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 557–567  相似文献   

18.
首先,采用乳酸为引发剂,辛酸亚锡为催化剂,引发丙交酯开环聚合制得具有缩聚活性的L-聚乳酸和D-聚乳酸;然后,将两者熔融共混后进行固相缩聚,合成了一系列立体嵌段聚乳酸。采用核磁共振(NMR)、凝胶渗透色谱(GPC)及差示扫描量热仪(DSC)分析了产物的链结构、重均分子量、热性能,并探讨了均相晶体和立体复合晶体共存情况下的固相缩聚机理。结果表明,固相缩聚产物分子量增长的适宜反应条件为:反应时间30h,较低的催化剂含量,L-聚乳酸质量分数为80%。L-聚乳酸和D-聚乳酸共混物较低的初始立体复合晶体结晶度有利于后续固相缩聚过程中产物分子量的增长;固相缩聚不仅发生在异链之间,而且也发生在同链之间。  相似文献   

19.
The blends of poly(1,3‐trimethylene carbonate‐b‐(l ‐lactide‐ran‐glycolide)) (PTLG) with poly(d ‐lactide) (PDLA) were prepared via solution‐casting method using CH2Cl2 as solvent. The poly(l ‐lactide) (PLLA) segments of PTLG with PDLA chain constructed as stereocomplex structures and growth stereocomplex crystals of PLA (sc‐PLA). The effects of sc‐PLA crystals on thermal behavior, mechanical properties, thermal decomposition of the PTLG/PDLA blends were investigated, respectively. The differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results showed that the total crystallinity of the PTLG/PDLA blends was increased with the PDLA content increasing. Heterogeneous nucleation of sc‐PLA crystals induced crystallization of the PLLA segments in PTLG. The crystallization temperature of samples shifted to 107.5°C for the PTLG/PDLA‐20 blends compared with that of the PTLG matrix, and decreased the half‐time of crystallization. The mechanical measurement results indicated that the tensile strength of the PTLG/PDLA blends was improved from 21.1 MPa of the PTLG matrix to 39.5 MPa of PTLG/PDLA‐20 blends. The results of kinetics of thermal decomposition of the PTLG/PDLA blends by TGA showed that the apparent activation energy of the PTLG/PDLA blends was increased from 59.1 to 72.1 kJ/mol with the increasing of the PDLA content from 3 wt% to 20 wt%, which indicated the enhancement of thermal stability of the PTLG/PDLA blends by addition of PDLA. Furthermore, the biocompatibility of the PTLG/PDLA blends cultured with human adipose‐derived stem cells was evaluated by CCK‐8 and live/dead staining. The experiment results proved the PTLG/PDLA blends were a kind of biomaterial with excellent physical performances with very low cytotoxicity.  相似文献   

20.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号