首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
商用SCR脱硝催化剂K2O中毒后再生:(NH4)2SO4溶液   总被引:1,自引:0,他引:1  
利用(NH4)2SO4溶液对K2O中毒后烟气SCR (selective catalytic reduction)脱硝商用催化剂活性进行再生。采用湿法浸渍法使催化剂表面负载不同质量K2O,前驱体为KNO3溶液。经过再生工艺处理后,在不同模拟烟气空速及氧浓度条件下均具有良好的活性。进一步利用离子色谱(IC)、N2吸附脱附分析(BET)、扫描电镜及其元素能谱分析(SEM-Maps, EDX)、红外光谱分析(FT-IR)等技术对再生前后催化剂进行表征。结果表明,再生工艺对K2O去除效果明显,有效地恢复了催化剂表面活性位V=O。此外,再生过程没有导致催化剂表面物质的流失及机械强度的降低。  相似文献   

2.
通过水热法合成了Al2O3纳米片(Al2O3-CN),采用浸渍法制备20%(质量分数)钴基催化剂,并应用于费托合成反应。制备的Al2O3-CN(226 m2/g)与商业氧化铝(Al2O3-C,249 m2/g)具有相近的比表面积,但Al2O3-CN孔尺寸分布更加集中。浸渍钴后,与Co/Al2O3-C催化剂相比,Co/Al2O3-CN催化剂表现出较高的还原度及更均匀的钴颗粒粒径分布。因此,Co/Al2O3-CN催化剂表现出更高的CO转化率和低的甲烷选择性。为了进一步提高Co/Al2O3-CN的催化性能,采用不同含量ZrO2对Al2O3-CN进行修饰。表征结果表明,随着ZrO2修饰量的增加,Al2O3-CN载体比表面积变化不明显,孔体积和孔径增大;相对应催化剂的钴颗粒粒径减小,活性位点数目增加。在相同反应条件下,经ZrO2修饰催化剂CO转化率进一步提高,甲烷选择性降低。  相似文献   

3.
采用浸渍法模拟商业V2O5-WO3/TiO2脱硝催化剂的砷中毒,并对不同As/V摩尔比中毒的催化剂进行脱硝实验测试,发现随着As中毒程度加深,催化剂的NOx转化率随之降低.当测试温度为400℃时,新鲜V2O5-WO3/TiO2催化剂NOx转化率有96.45%,而当As/V摩尔比到0.2的时候,As中毒催化剂的NOx转化率降低至不足67%.采用XRD、BET、SEM、in situ DRIFTS和H2-TPR等多种表征方法对As中毒前后催化剂的物性结构、表面物质的存在形式以及氧化还原性能的对比研究,结果显示As2O3堵塞催化剂微孔结构,导致催化剂表面微孔数量的减少,As2O5涂覆催化剂表面,进而阻碍了气相成分参与多相催化反应;As的引入使得表面形貌略有变差,并未导致催化剂晶型的变化,且As及其化合物在催化剂表面分散度较高.As会与催化剂表面的羟基作用形成As-OH,抑制催化剂酸性,尤其对Lewis酸的抑制效果明显;As中毒后的催化氧化还原能力增强.  相似文献   

4.
本文采用浸渍法制备了Nb改性的V2O5-WO3/Ti O2催化剂,研究了脱硝反应中Nb负载量对催化剂SO2氧化活性的影响。结果表明,在350℃下,Nb2O5负载量为2%的Nb2O5-V2O5-WO3/Ti O2催化剂上的SO2氧化率最低(0.6%),而同时NOx的转化率仍能达到95%。采用TGA、氮吸附、XRD、H2-TPR、CO2-TPD、XPS和in-situ DRIFTS等对催化剂进行了表征分析,结果显示,Nb改性后V2O5-WO3/Ti O2催化剂的晶体结构没有发生明显改变,但是其比表面积小幅度下降,有助于减少对SO2的吸附;同时,改性后催化剂表面的吸附氧含量下降,氧化还原性能也稍微减弱,这有利于降低其对SO2...  相似文献   

5.
使用溶胶-凝胶法制备了LaCoO3催化剂,采用XRD、BET和XPS等方式对催化剂进行了表征,考察了该催化剂制备过程中煅烧温度、表面活性剂PEG-6000和PEG-20000含量对其H2S选择氧化制硫磺反应催化活性的影响。结果表明,表面活性剂PEG-6000及PEG-20000的添加能明显提高LaCoO3的催化活性。0.02 mol La(NO33+0.02mol Co(NO32溶液中添加0.30 g PEG-20000、煅烧温度为650℃时所制备的LaCoO3催化活性最好;在最佳反应温度260℃下,H2S的转化率达到96.10%,硫选择性为93.77%。  相似文献   

6.
采用并流沉淀法分别制备了CuO-CeO2(物质的量比为5:1)、CuO-ZnO(物质的量比为5:4)、CuO-ZnO-CeO2(物质的量比为5:4:1)三组目标催化剂,通过X射线衍射(XRD)、氢气升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、氮气吸附-脱附、X射线光电子能谱(XPS)、N2O滴定表征技术对催化剂的物化性能进行了测试,并在高温高压微催化反应器中对催化剂进行活性评价。研究了CuO-ZnO-CeO2组成对CO2加氢合成甲醇的影响。结果表明,与二组分催化剂相比较,三组分CuO-ZnO-CeO2催化剂物化性能及催化活性发生了很大变化,催化剂表面碱性位增强,热稳定性增强,CuO颗粒粒径变小,铜分散度以及氧空位浓度提高,最终催化活性显著提高。其中,CuO-ZnO-CeO2催化剂中,CuO颗粒粒径为8.2nm,铜的比表面积为68.4m2/g,铜分散度为7.19%,甲醇的选择性和收率分别为48.6%和0.057mmol/(g·min),催化剂活性较好。  相似文献   

7.
用水热法和共沉淀法分别制备了Nd-Co3O4催化剂,催化分解N2O。其中,水热法制备的Nd-Co3O4催化活性较高。在不同组成的Nd-Co3O4中,优化出了较高活性的0.01Nd-Co3O4催化剂,在其表面浸渍K2CO3溶液制备K改性催化剂(K/Nd-Co3O4)。用X射线衍射(XRD)、N2物理吸附、扫描电镜(SEM)、X射线光电子谱(XPS)、程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)等技术表征催化剂结构。结果表明,Nd-Co3O4和K改性催化剂均为尖晶石结构;K改性弱化了催化剂表面Co-O键,有利于表面氧的脱除,提高了催化剂活性。有氧有水气氛350 ℃连续反应40 h,K/Nd-Co3O4催化剂上的N2O分解率超过90%,稳定性较好。  相似文献   

8.
以Pluronic P123作结构导向剂,采用Al (NO33-NaAlO2双水解法合成氧化铝,在成胶过程中加入正硅酸乙酯,制备硅质量分数分别为5%、10%、15%的SiO2-Al2O3载体,并通过共浸渍法制备出Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂。通过XRD、N2吸附-脱附、Py-FTIR、NH3-TPD、H2-TPR、TEM和XRF等手段对载体及催化剂的性质进行表征。结果表明,硅质量分数为10%的SiO2-Al2O3具有优良的孔结构、较多的中强酸以及部分有序的介孔结构。以此为载体制备的Co-Mo/10% SiO2-Al2O3催化剂中,MoS2颗粒均匀地分散在载体上,具有更多的B酸性位和Ⅱ型CoMoS活性相。以减二线蜡油为原料油的固定床活性评价结果表明,生成油中主要组分为链烷烃与环烷烃;尤其Co-Mo/10% SiO2-Al2O3催化剂具有优良的加氢性能,在15 MPa、380℃、氢油比为1000、空速为0.6 h-1的反应条件下,其HDS和HDN数值均超过99%,产品中S含量小于10 μg/g,N含量小于2 μg/g,可以满足后续异构脱蜡等对原料的要求。  相似文献   

9.
在实验室模拟了负载型V2O5-WO3/TiO2催化剂砷的中毒。采用催化剂活性测试,NH3-TPD、H2-TPR、XPS技术表征催化剂中毒特性。实验表明,砷中毒使催化剂活性降低明显。NH3-TPD、H2-TPR、XPS表征结果表明,As中毒使催化剂表面酸性降低,催化剂中W、Ti化学形态不受砷中毒的影响,而砷中毒改变了催化剂表面钒的化学形态,认为酸性降低和钒化学形态的改变引起了催化剂的中毒。  相似文献   

10.
以γ-Al2O3为载体通过原位共沉淀法制备NiMgAl-LDHs/γ-Al2O3,经焙烧后得到NiMg(Al)O/γ-Al2O3催化剂,通过TG-DTG、XRD、SEM、BET、FT-IR、CO2-TPD等手段对催化剂进行了表征,并对其在酯交换制备生物柴油反应中的催化性能进行了研究。结果表明,NiMgAl-LDHs和NiMg(Al)O成功在γ-Al2O3内孔表面生长,并有良好的结合度。催化剂对酯交换具有很高的催化活性;在醇油物质的量比为12:1的条件下反应3 h,生物柴油产率为95%,重复使用七次后,生物柴油产率仍然在82%以上。  相似文献   

11.
基于商业V_2O_5-WO_3/Ti O_2脱硝催化剂,设计了两种模拟Ca SO_4中毒的方法,通过比表面积测定(BET)、X射线衍射(XRD)、程序升温还原(H_2-TPR)、扫描电子显微镜(SEM)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等表征技术并结合固定床脱硝性能测试平台,对中毒前后催化剂的微观结构、氧化还原能力及表面性质的变化与脱硝活性进行了对比研究,探索硫酸钙中毒机理。研究表明,Ca SO_4会堵塞催化剂孔径,孔径小于2.7 nm和孔径大于17.8 nm时Ca SO_4的影响更大,从而使催化剂的比表面积和孔体积变小;Ca SO_4中毒会导致Brnsted酸位数量和强度的降低,同时Lewis酸强度也会减弱,从而阻碍了NH_3的吸附,Ca SO_4引起催化剂氧化还原能力的降低。  相似文献   

12.
采用浸渍法制备了不同含量重金属(Pb, Cu和Zn)中毒商业V_2O_5-WO_3/TiO_2催化剂,并对催化活性进行评估,重金属可明显导致催化活性降低.随着重金属浓度的增加,催化剂的失活程度加剧,而Cu和Zn的中毒效应低于Pb.结合XRD、 BET、 SEM、 NO-TPD、 NH_3-TPD、 H_2-TPR和in situ DRIFTS等方法对重金属中毒前后催化剂的理化性质进行分析.分析结果表明,失活是由化学和物理中毒的耦合作用引起的.相比于Fresh催化剂,中毒催化剂微孔和中孔有明显堵塞现象, BET比表面积减小,而中毒前后催化剂结晶度几乎没有变化,而中毒催化剂的表面覆盖了一层白色晶体,这可能导致活性位点被占据并阻碍NH_3在催化剂表面的吸附. in situ DRIFTS结果表明,重金属中毒后Br?nsted和Lewis酸位点的强度减弱,尤其是Br?nsted酸位点.此外,随着重金属含量的增加,中毒催化剂表面NO_2吸附量逐渐增加,从而促进N_2O的形成. H_2-TPR结果显示,还原峰的强度随着还原温度的升高而增强,表明重金属导致催化剂中的活性组分更难以参与SCR反应.  相似文献   

13.
考察了SO_2对Mn-Ce/TiO_2低温脱硝催化剂活性的影响,利用XRD、BET、SEM和XPS对其毒化作用的原因进行分析。结果表明,SO_2对催化剂活性有明显的抑制作用,使NO_x去除率由84%降至42%左右。主要是SO_2的加入造成催化剂比表面积减小,孔径为5-10 nm的孔数量减少,且催化剂晶相由锐钛矿型转化成金红石型结构,活性组分MnO_x发生晶化现象,破坏了Mn-Ti间的强相互作用。催化剂理化性质的变化造成吸附态氧转化为晶格氧的路径受阻、MnO_2含量减少和CeO_x储氧功能减弱,并且产生氧阻效应而使NO吸附和解吸受阻,造成催化剂活性降低。同时生成的硫酸铵盐在催化剂表面沉积,覆盖了催化剂表面的Lewis酸性位,使其对NH_3吸附能力减弱。  相似文献   

14.
考察添加不同含量Cl离子对浸渍法制备的Cl-V_2O_5-WO_3/TiO_2催化剂低温NO转化率的影响。随着Cl离子质量添加量从0增加到2.5%,Cl-V_2O_5-WO_3/TiO_2催化剂NO转化率先升高后降低,结合在含有SO_2和H2O的SCR实验结果,确定1.5%Cl-V_2O_5-WO_3/TiO_2为性能最优催化剂。在反应温度为149-362℃,NO转化率大于95%;在145-385℃,NO转化率大于90%。采用XRF、BET、XRD、TG、FT-IR和H2-TPR等方法表征了催化剂的物理化学性能和结构。结果表明,在反应气氛中加入SO_2和H2O后,催化剂比表面积和孔容均减小,副反应产物含有NH+4和SO_2-4。适量Cl离子可以抑制硫物种沉积,减少副反应产物生成,增强催化剂抗中毒能力。  相似文献   

15.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备. 通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能. 结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P. 不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340 ℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

16.
纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究   总被引:4,自引:2,他引:2  
实验制备了陶瓷颗粒为骨架的纳米级V2O5-WO3/TiO2(C)催化剂。采用浸渍法模拟碱金属中毒,研究了中毒及再生对催化剂脱硝活性的影响,运用XRD、FT-IR、H2-TPR、XPS技术表征分析了碱金属对催化剂的失活作用。实验表明,碱金属能使催化剂活性降低,钾的毒性大于钠。FT-IR结果显示,催化剂以Lewis酸作为活性酸位。H2-TPR、XPS结果表明,钾的加入降低了催化剂的氧化能力,主要影响了催化剂表面的吸附氧。采用单纯的水洗方法并不能提高催化剂活性,而酸洗再生后催化剂在较高反应温度下活性得到较好的恢复。  相似文献   

17.
以广义酸-碱对理论为依据,报道了一种仅利用纯无机碱和盐为原料在蜂窝陶瓷载体上制备介孔MgAl2O4涂层的方法,并通过原位酸碱反应对涂层进行CexZr1-xO2修饰和Pt的负载,成功制备出具有高催化活性的整体式氢气燃烧催化剂.通过扫描电子显微镜(SEM),X射线衍射仪(XRD)以及N2吸/脱附分析仪表征了催化剂的微观结构.结果表明复合涂层不仅具有均匀的微晶结构,而且具有高的比表面积(>250m2·g-1)和大的孔容(0.32cm3·g-1).氢气催化燃烧反应结果显示,制备的整体式催化剂具有很高的催化活性,可以在室温下快速起燃,并且氢气的初始转化率达到95%以上.  相似文献   

18.
采用等体积浸渍法制备了不同负载量的La2O3/γ-Al2O3催化剂,并考察了负载量和反应温度对催化剂用于二甲醚二氧化碳重整制氢反应的性能影响。结果表明,反应温度为550℃、La2O3负载量为15%时,催化剂表现出最好的性能:二甲醚的转化率为100%,二氧化碳的转化率达到85.4%,产物氢气的选择性高达93.3%,一氧化碳的选择性为76.04%,副产物甲烷的选择性仅为6.3%。550 ℃时其平均积炭速率为1.387 5 mg/(g·h)。研究还利用XRD、BET、TEM、TG等方法对催化剂进行了表征。  相似文献   

19.
用CaO作为改性助剂,采用并流共沉淀法制备了CuO∶ZnO∶ZrO_2为5∶4∶1(物质的量比),CaO添加量为0、1%、2%、4%、8%、16%(摩尔分数)的六组催化剂。用X射线衍射(XRD)、微商热重(TG-DTG)、傅里叶红外(FT-IR)、N2吸附脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H_2-TPR)、CO_2程序升温脱附(CO_2-TPD)、NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征。用自制固定床评价了催化剂活性。结果表明,添加CaO后,催化剂路易斯酸性和表面碱性增强;催化剂母体中高温碳酸盐含量增加,热稳定性增强,CuO颗粒粒径变小,Cu-Zn协同作用增强,Cu比表面积增大,分散性变好。催化剂活性受到表面酸碱性、铜比表面积、Cu-Zn协同作用和铜分散性共同影响。当CaO为2%时,铜比表面积为79.3 m2/g、铜分散度为34.8%、CO_2转化率为24.55%、甲醇选择性为19.01%、甲醇收率为0.044 g/(gcat·h),催化剂活性最好。过量CaO占据催化剂孔道和覆盖表面活性位,使催化剂路易斯酸性和表面碱性过强,CuO与H_2有效接触减少,CO_2难以脱附,催化活性下降。因此,适量CaO(2%)添加可促进CO_2加氢反应合成甲醇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号