首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以二苯甲酮(BP)为紫外引发剂,将聚乙二醇甲基丙烯酸甲酯(PEGMA)接枝在聚砜超滤膜表面以提高膜的抗污染性能.在二苯甲酮存在的条件下,波长较长(λ300nm)的紫外光(UV)辐射下发生提氢反应,可以有效防止聚砜分子主链的剪切,保持改性膜的分离性能.考察了PEGMA浓度、UV辐射时间和BP浓度对改性超滤膜接枝度、亲水性和抗污染性能的影响.用表面全反射红外光谱(ATR/FTIR)表征改性前后膜表面化学组成的变化.表面改性膜的纯水通量略有降低而牛血清白蛋白(BSA)截留率有所提高.随着接枝度的提高,PEGMA接枝改性膜的抗污染性能增加.  相似文献   

2.
采用硅烷偶联剂4-氯苄基三氯硅烷对二氧化硅颗粒表面进行改性, 制得表面接枝氯苄基的亲油二氧化硅颗粒. 在亲油二氧化硅颗粒表面继续接枝亲水性的十二烷基咪唑, 即可制得含有离子液体基团的双亲性二氧化硅颗粒. 通过静电吸附氯铂酸和硼氢化钠还原, 可在两亲性二氧化硅颗粒表面负载铂纳米颗粒, 从而得到双亲性二氧化硅颗粒催化剂. 用扫描电镜、 透射电镜、 X射线衍射和红外光谱等对所得样品进行表征, 并以苯甲醇氧化反应为研究对象对催化剂性能进行评价, 结果显示, 使用此催化剂可使苯甲酸的产率达到90%.  相似文献   

3.
γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(GPTMS)是一种重要的硅烷偶联剂,由GPTMS修饰的纳米二氧化硅(GPTMS-SiO2)正在被广泛应用.本文对近年来GPTMS修饰二氧化硅的研究进行了简要概述:介绍了GPTMS修饰纳米二氧化硅的典型方法、修饰机理及存在的问题;归纳了FT-IR、XPS、NMR、元素分析、AFM等表征GPTMS 修饰层手段及GPTMS-SiO2表面环氧基的测定方法;探讨了不同修饰方法对所形成的GPTMS层结构及稳定性的影响;阐述了GPTMS修饰二氧化硅在色谱固定相、生化分析分离、光学材料、涂料黏合剂工业、介孔催化等领域的应用;并对其新的合成方法、分析评价体系、活性基团的测定方法及应用领域等作了展望.  相似文献   

4.
以溶胶-凝胶伴随相分离法制备的阶层多孔二氧化硅作为载体,3-氨丙基三乙氧基硅烷(APTES)为改性剂,乙醇为还原剂,在阶层多孔二氧化硅固体骨架上进行银纳米颗粒均匀负载.利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、汞压、N2吸附/脱附、X射线光电子能谱(XPS)等测试技术对银纳米颗粒负载阶层多孔二氧化硅进行了表征,探讨了APTES表面改性、乙醇还原机理以及银纳米颗粒负载块体的孔结构特征变化规律.结果表明:APTES表面改性将氨基接枝于阶层骨架上,氨基与银离子形成银氨离子,银氨离子经乙醇还原后将平均粒径约16 nm的银纳米颗粒成功负载于二氧化硅的大孔及介孔内部;负载后的阶层多孔块体的大孔骨架未受到破坏,但其比表面积由418 m2·g-1下降到254m2·g-1,两次还原负载能提高银纳米颗粒的负载量.  相似文献   

5.
二氧化硅/聚苯乙烯单分散性核/壳复合球的制备   总被引:9,自引:0,他引:9  
采用无皂乳液聚合包覆 ,制备了二氧化硅 聚苯乙烯单分散核 壳 (SiO2 PS)复合颗粒 ,包覆层厚度达到 10 0nm .选择 80~ 2 5 0nm二氧化硅粒径作为核颗粒 .为提高包覆效率 ,二氧化硅颗粒先用偶联剂甲基丙烯酰 (3 三甲氧基硅烷 )丙酯 (MPS)进行不同程度的表面改性 .控制MPS的结合率和单体的初始浓度可提高包覆效率 ,同时得到了单分散性复合颗粒 ,用透射电镜 (TEM)观察复合粒子的核 壳形态 .用动态光散射法 (DLS)测量表明所得复合颗粒具有单分散性 .  相似文献   

6.
以N-(p-Maleimidophenyl)isocyanate(PMPI)为交联剂, 将线粒体信号肽分子共价修饰到二氧化硅荧光纳米颗粒表面, 构建线粒体信号肽功能化二氧化硅荧光纳米颗粒. 采用荧光分光光度计、Zeta电位仪以及透射电子显微镜对修饰前后的二氧化硅纳米颗粒进行了表征. 结果表明, 信号肽可被成功修饰在纳米颗粒表面, 并且纳米颗粒粒径在信号肽分子修饰前后没有发生明显变化. 以分离纯化的细胞核作为对照, 采用流式细胞术考察了信号肽功能化二氧化硅荧光纳米颗粒与分离纯化后的线粒体的相互作用. 结果表明, 线粒体信号肽修饰到二氧化硅纳米颗粒表面后依然保持良好的生物活性, 能够介导二氧化硅纳米颗粒特异性识别及结合分离纯化的线粒体, 从而为线粒体监测及其功能调控研究提供了新的思路.  相似文献   

7.
以甲苯为溶剂、硅烷偶联剂为改性剂对纳米氧化锆进行接枝改性。探究了改性剂硅烷偶联剂KH-570的体积百分含量、反应温度和反应时间对纳米氧化锆表面改性接枝效果的影响。采用扫描电镜、能谱分析、傅里叶变换红外光谱(FTIR)、粒径分析等手段表征改性前后纳米氧化锆粉体。结果表明,当硅烷偶联剂KH-570的体积百分含量为10%,反应温度80℃,反应时间30min时,纳米氧化锆表面接枝改性效果最好。此时,硅烷偶联剂KH-570与纳米氧化锆之间形成了化学结合。  相似文献   

8.
聚芳酯树枝状分子接枝改性纳米二氧化硅   总被引:16,自引:0,他引:16  
功能化改性二氧化硅广泛应用于色谱分离、异相催化、酶和蛋白质的固定及高分子复合材料等领域 [1] .通过改性 ,不仅可以使二氧化硅粉体的表面功能化 ,而且可以显著改善纳米二氧化硅在聚合物基体中的分散性和相容性 ,从而提高聚合物基纳米复合材料的综合性能 [2 ] .二氧化硅的表面改性主要涉及表面硅醇基的化学反应和接枝聚合反应 [1] ,所接枝的有机分子一般为线型结构 ,而具有规则枝化结构的树枝状分子近年来也受到了关注 [3~ 8] .Tsubokawa等 [3 ]用发散法将聚酰胺类树枝状高分子 (PAMAM)接枝到了纳米二氧化硅的表面 ,经改性后的产品在…  相似文献   

9.
在纳米二氧化硅水分散介质中,借助于正离子单体甲基丙烯酰氧乙基三甲基氯化铵(MTC)与未改性纳米二氧化硅颗粒之间的电荷作用,通过MTC与甲基丙烯酸甲酯(MMA)的自由基共聚合,制备了草莓型的PMMA/SiO2复合微球.整个制备反应过程中,纳米二氧化硅无需表面处理,体系中无需另外加入乳化剂或助乳化剂,微球表面吸附的纳米二氧化硅对颗粒起稳定作用.详细讨论了纳米二氧化硅初始添加量、MTC浓度对复合微球的平均粒径、复合微球中二氧化硅含量及微球形态的影响.动态光散射粒度分布仪(DLS)测得复合微球粒径在180~300 nm之间,热重分析(TGA)表明复合微球中二氧化硅含量介于16.4%~40.8%之间.透射电镜(TEM)显示所得复合微球具有草莓型结构,二氧化硅于表面富集.  相似文献   

10.
首先使用偶联剂γ-氨丙基三甲氧基硅烷(AMPS)对微米级硅胶微粒进行了表面改性,制得表面带有伯胺基的改性微粒SiO2-AMPS,接着使4-(二乙氨基)水杨醛(DEAS)与微球SiO2-AMPS发生席夫碱反应,制得表面含有芳叔胺基的改性微粒SiO2-DEAS.使改性微粒SiO2-DEAS表面的芳叔胺基团与溶液中的BPO构成氧化-还原引发体系,实现了油溶性单体苯乙烯(St)在硅胶微粒表面的引发接枝聚合,制得了高接枝度(27 g/100g)的接枝微粒SiO2-DEAS-g-PSt.采用红外光谱(FTIR)、扫描电镜(SEM)及热重分析(TGA)等方法对接枝微粒SiO2-DEAS-g-PSt进行了表征.在此基础上,重点研究了主要因素对芳叔胺-BPO体系引发St接枝聚合的影响.研究结果表明,与在固体微粒表面引入可聚合双键的"穿过接枝"(grafting through)法相比,芳叔胺-BPO体系引发的接枝聚合,由于活性位点位于载体表面,故具有高的接枝度,是油溶性单体的一种高效率的表面引发接枝法.为制得高接枝度的接枝微粒SiO2-DEAS-g-PSt,适宜的温度为50℃,适宜的BPO用量为单体的3 wt%左右,适宜的单体浓度为10 wt%.  相似文献   

11.
The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.  相似文献   

12.
Negatively charged silica sol is known to lead to fouling of anion exchange membranes during electrodialysis (ED) as a result of its deposition on the membrane surface. It is known that the fouling potential is related to the physical and electrochemical properties of the silica particles as well as those of the anion exchange membranes. In this study, the properties of the silica sol were characterized in terms of its particle size, turbidity, and zeta potential in order to predict their effects on the electrodialysis performance. In the stability of colloidal particles, the critical coagulation concentrations of silica sol were determined as functions of ionic strength, cation species, and solution pH. In the electrodialysis of NaCl solution containing silica sol with various concentrations of CaCl(2), the colloidal behavior related to deposition and transport was examined during and after electrodialysis. The electrodialysis experiments clearly showed that the deposition and transport of silica sol during electrodialysis were related to the colloidal stability of dispersion.  相似文献   

13.
The effect of methanol cosolvent on the synthesis of polypyrrole-silica colloidal nanocomposites using ultrafine silica sols in combination with both FeCl3 and APS oxidants has been investigated. Two protocols were evaluated: the addition of methanol to an aqueous silica sol and the addition of water to a methanolic silica sol. The latter protocol proved to be more robust, since it allowed colloidally stable dispersions to be prepared at higher methanol content (up to 50 vol% using the APS oxidant). This allowed greater control over the particle size of the nanocomposite particles. In general, the spectroscopic data, the particle size range, silica contents and electrical conductivities of these nanocomposites were similar to those reported earlier for purely aqueous formulations. Polypyrrole contents ranged from 49 to 71% by mass and particle diameters varied from around 160 to 360 nm. In terms of colloid stability, the APS oxidant was preferred for nanocomposite syntheses in the presence of methanol. However, the FeCl3 oxidant generally gave higher conductivities and narrower size distributions under comparable conditions. HF etching experiments combined with transmission electron microscopy studies indicated that, to a first approximation, these nanocomposite particles had core-shell morphologies, with a hydrophobic polypyrrole core and a hydrophilic silica shell that compose approximately one monolayer of silica sol particles. Finally, aqueous electrophoresis measurements suggested that the polypyrrole-silica nanocomposites were silica-rich and that the methanolic silica sol was more hydrophobic (lower surface charge density) than the aqueous silica sol.  相似文献   

14.
Surface characterization and foaming studies were carried out with nine industrially manufactured, colloidal silica dispersions with particles sizes from 5-40 nm. All the silica sols produced transient foams with short decay times and the dynamic foam generation (foamability) was found to vary according to the sol type with the greatest foamability occurring for the hydrophobically modified sol and the deionized hydrophilic sol. However, it was found that improved foamability of all the sols could be achieved by changing the pH to within the region of the pH(pzc) which corresponds to the region of lowest hydrophilicity. An increase in pH (and build-up of negative charge) enhances the surface hydrophilicity and caused a decrease in foamability. In addition, for selected hydrophilic sols, it was shown that the foamability (a) increased with decrease in particle size (within the 6-40 nm range) and (b) increased with particle concentration (within the range of 1-15 wt%). Overall, it was concluded that the foamability was primary controlled by hydrophobicity (and hence by pH) and also by the particle concentration, the particle size and the degree of agglomeration.  相似文献   

15.
An experimental approach, based on turbidity measurements, is proposed for studies of the stability in colloidal mixtures containing particles with large disparity in size. The main advantage of this approach is that it permits investigations even under conditions of comparable particle number concentrations of the two colloidal populations. Binary mixtures containing a poly(vinyl acetate) (PVAc) latex and a Ludox AS-40 silica sol were investigated. The silica particles were much smaller than the latex ones. The experimental stability factors were compared with the theoretical values computed on the basis of the Kihira-Ryde-Matijevic model (J. Chem. Soc., Faraday Trans. 88(16), 2379 (1992)) for interaction between spherical particles with unevenly distributed surface charges. All the experimental results support the idea that, even when both sols are negatively charged, the small silica particles are adsorbed onto the latex surface. Under these conditions, the heteroaggregates, which are composed of PVAc cores surrounded with silica particles, can be modeled as PVAc particles having "modified" surface characteristics (i.e., average Stern potential and varying extents of the surface charge segregation). Copyright 2001 Academic Press.  相似文献   

16.
Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.  相似文献   

17.
纳米SiO_2锚固光敏基团引发MMA光接枝聚合研究   总被引:1,自引:0,他引:1  
对纳米SiO2进行了锚固光引发剂的表面修饰,进而引发甲基丙烯酸甲脂(MMA)光接枝聚合制备有机/无机复合粒子.纳米SiO2粒子首先用氯化亚砜进行表面氯化,再与光引发剂2-羟基-4-(2-羟基乙氧基)-2-甲基苯丙酮(Irgacure2959)反应从而锚固上光引发剂.通过紫外光引发MMA在经过修饰过的纳米SiO2表面上进行表面光接枝聚合.采用IR、TGA和TEM等方法表征了接枝前后纳米粒子的变化,证明了表面接枝物的存在,并研究了不同反应条件对单体转化率、接枝率和接枝效率的影响.研究结果表明,搅拌对接枝过程的影响比较显著.TGA结果显示未搅拌聚合时接枝率只能达到比较小的程度,而在搅拌条件下180min内MMA的接枝率可达到110%.  相似文献   

18.
The internal nanomorphologies of two types of vinyl polymer-silica colloidal nanocomposites were assessed using electron spectroscopy imaging (ESI). This technique enables the spatial location and concentration of the ultrafine silica sol within the nanocomposite particles to be determined. The ESI data confirmed that the ultrafine silica sol was distributed uniformly throughout the poly(4-vinylpyridine)/silica nanocomposite particles, which is consistent with the "currant bun" morphology previously used to describe this system. In contrast, the polystyrene/silica particles had a pronounced "core-shell" morphology, with the silica sol forming a well-defined monolayer surrounding the nanocomposite cores. Thus these ESI results provide direct verification of the two types of nanocomposite morphologies that were previously only inferred on the basis of X-ray photoelectron spectroscopy and aqueous electrophoresis studies. Moreover, ESI also allows the unambiguous identification of a minor population of polystyrene/silica nanocomposite particles that are not encapsulated by silica shells. The existence of this second morphology was hitherto unsuspected, but it is understandable given the conditions employed to synthesize these nanocomposites. It appears that ESI is a powerful technique for the characterization of colloidal nanocomposite particles.  相似文献   

19.
The monodisperse superficially porous core-shell silica microspheres (CSSMs) with controllable shell thickness and pore size were synthesized by an improved polymerization-induced colloid aggregation (PICA) approach for fast separation of small solutes and proteins.  相似文献   

20.
Silica monoliths embedded with high concentration of γ-Fe2O3 or TiO2 nanoparticles were prepared by a sol–gel procedure designed according to the inherent properties of oxide colloids. In the first step, highly dispersible oxide nanoparticles were produced using an in situ modification sol–gel strategy. Then, these particles were re-dispersed in silicon alkoxide-containing solution to form a stable colloidal solution. The hydrolysis and condensation reactions of alkoxide were catalyzed by an organic base (morpholine). Due to the large molecule size of morpholine, the electric double layer on the surface of colloidal particles was not compressed by the ionized morpholine molecules. The colloidal solution thus remained stable during the gelation process. Through this procedure, oxide nanoparticles could be immobilized homogeneously in the pores of a silica matrix, forming highly transparent and crack-free monoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号