首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Lai  Weidong  Li  Xiaofan  Li  Bin  Mei  Jia  Zhang  Xianke  Guo  Wei  Peng  Guanghuai  Li  Haixia  Li  Xiaokang  Yuan  Jujun 《Journal of Solid State Electrochemistry》2021,25(4):1175-1181

ZnO/ZnFe2O4@reduced graphene oxide (RGO) nanocomposites have been successfully synthesized through annealing treatment of Zn/Fe MOF-5@GO composites. The ZnO/ZnFe2O4 nanoparticles with a diameter of 12–15 nm are evenly distributed on the surface of RGO. The ZnO/ZnFe2O4@RGO nanocomposites show superior rate capacity and cyclic stability of 655 mAh/g after 200 cycles at 0.2 A/g for lithium ion battery (LIB) anode. The superior electrochemical property benefits from the unique structure of ZnO/ZnFe2O4@RGO nanocomposites, which can provide a buffer space for volume expansion, and enhance conductivity in the charge/discharge cycle.

  相似文献   

2.
In this paper, ZnFe2O4, a visible light active photocatalyst, was comodified by graphene oxide (GO) and Ag nanoparticles (NPs) to form ZnFe2O4–Ag/rGO nanocomposite (NC) by facile one‐pot hydrothermal method. Reduction of GO and formation of ZnFe2O4 and Ag nanoparticles occurred simultaneously during hydrothermal reaction. The photocatalytic activity of the NC was investigated under visible light, for the degradation of 17α‐ethinylestradiol (EE2), a nondye compound, which also is an emerging pollutant with endocrine‐disrupting activity. The pseudo rate constant (k′) of as‐synthesized ZnFe2O4–Ag/rGO NC was higher by the factor of 14.6 and 5.6 times than the corresponding ZnFe2O4 and ZnFe2O4/rGO respectively. The synergistic interactions between ZnFe2O4, Ag and rGO leading to decreased aggregation of the NPs, increased surface area, better absorption in visible region, effective electron–hole generation transfer. However, in the presence of humic acid (HA), the photosensitization effect was predominated by competitive interaction resulting in only 80% removal of EE2 within the same time. Moreover, the composite can easily be magnetically separated for reuse.  相似文献   

3.
Reduced graphene oxide/Zinc ferrite (rGO/ZnFe2O4) nanohybrids are successfully decorated on the surface of the rGO sheets through a simple, one-step hydrothermal method. ZnFe2O4 nanoparticles (NPs) are homogeneously anchored on the rGO sheets. The rGO/ZnFe2O4 hybrids are characterized by XRD, FT-IR, XPS, TEM, Raman, BET. The rGO/ZnFe2O4 hybrids demonstrate amazing catalytic activity on thermal decomposition of ammonium perchlorate (AP), which is better than that of bare ZnFe2O4 NPs. TG-DTA results indicate that the ZnFe2O4 NPs in the hybrids with increasing ratio (1%, 3%, 5%) could decrease the second decomposition temperature of AP by 42.7?°C, 55.0?°C, 68.1?°C, respectively, and reduce the apparent activation energy of AP from 160.2?kJ?mol?1 to 103.8?kJ?mol?1. This enhanced catalytic performance is mainly attributed to the synergistic effect of ZnFe2O4 NPs and rGO.  相似文献   

4.
Zinc ferrite (ZnFe2O4)y nanoparticles/Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (CuTl-1223) superconductor composites with y = 0–2 wt.% were prepared by adding ZnFe2O4 nanoparticles into CuTl-1223 superconductor matrix and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transforms infrared (FTIR) spectroscopy and dc-resistivity (ρ) measurements. The bulk CuTl-1223 superconductor matrix was synthesized by solid-state reaction and Zinc ferrite (ZnFe2O4) nanoparticles were separately prepared by sol–gel method. XRD analysis revealed the tetragonal and spinel structure of CuTl-1223 superconductor and ZnFe2O4 nanoparticles, respectively. The XRD analysis showed that increased concentration of ZnFe2O4 nanoparticles doesn't disturb the tetragonal structure of host CuTl-1223 superconductor matrix and has no appreciable effect on its lattice parameters. The SEM images confirm the granular structure of the host superconductor matrix. The presence of ZnFe2O4 nanoparticles in host superconductor matrix is confirmed by using FTIR study. Variation of zero resistivity critical temperature {Tc (0)} depends upon the concentration of the nanoparticles in the host superconductor matrix. The overall suppression of Tc (0) and diamagnetism with increasing nanoparticles concentration is most probably due to trapping of mobile free carriers and reflection of spin charge due to presence of paramagnetic ZnFe2O4 nanoparticles. There is possibility for the incorporation of Fe and Zn in the lattice sites during the synthesis process, which may also cause the reduction of Tc (0) of the final composites.  相似文献   

5.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   

6.
Magnetic CoFe2O4-functionalized graphene sheets (CoFe2O4-FGS) nanocomposites have been synthesized by hydrothermal treatment of inorganic salts and thermal exfoliated graphene sheets. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that cobalt ferrite nanoparticles with sizes of 10-40 nm are well dispersed on graphene sheets. OH was recognized as a tie to integrate the inorganic salts with the graphene sheets, which made reaction started and developed on the surface of graphene sheets and formed cobalt ferrite nanoparticles on graphene sheets. The adsorption kinetics investigation revealed that the adsorption of methyl orange from aqueous solution over the as-prepared CoFe2O4-FGS nanocomposites followed pseudo-second-order kinetic model and the adsorption capacity was examined as high as 71.54 mg g−1. The combination of the superior adsorption of FGS and the magnetic properties of CoFe2O4 nanoparticles can be used as a powerful separation tool to deal with water pollution.  相似文献   

7.
We demonstrated that ZnFe2O4/polypyrrole core-shell nanoparticles could be facilely synthesized via in situ chemical oxidative polymerization of pyrrole monomers on the surface of ZnFe2O4 nanoparticles. The shell thickness of core-shell nanoparticles could be easily controlled by adjusting the amount of pyrrole monomers. The phase structures, morphologies and properties of the as-prepared products were investigated by XRD, TEM, SEM, VSM, and FTIR spectra. Magnetic studies revealed that the saturation magnetization (Ms) and coercivity (Hc) of ZnFe2O4/PPy core-shell nanoparticles is 17.8 emu/g and 130 Oe, respectively. The electromagnetic characteristics of products showed that ZnFe2O4/PPy core-shell nanoparticles exhibit excellent microwave absorption performance than ZnFe2O4 nanoparticles, such as more powerful absorbing property and wider electromagnetic wave absorbing frequency band due to the proper matching of the permittivity and the permeability of ZnFe2O4/PPy core-shell nanoparticles.  相似文献   

8.
Hollow microspheres composed of phase-pure ZnFe2O4 nanoparticles (hierarchically structured) have been prepared by hydrothermal reaction. The unique hollow spherical structure significantly increases the specific capacity and improves capacity retention of this material. The product of each phase transition during initial discharge (ZnFe2O4 ? Li0.5ZnFe2O4 ? Li2ZnFe2O4  Li2O + Li–Zn + Fe) and their structural reversibility are recognized by X-ray diffraction and electrochemical characterization. The products of the deeply discharged (Li–Zn alloy and Fe) and recharged materials (Fe2O3) were clarified based on high resolution transmission electron microscopic technique and first-principle calculations.  相似文献   

9.
Advanced oxidation processes (AOPs) counting heterogeneous photocatalysis has confirmed as one of the preeminent method for waste water remediation. In the present work, we have successfully fabricated novel visible-light-driven nitrogen-doped graphene (NG) supported magnetic ZnO/ZnFe2O4 (ZnO/ZF/NG) and ZnO/CoFe2O4 (ZnO/CF/NG) nanocomposites. ZnO synthesized via direct precipitation method. Hydrothermal method was used for the preparation of nitrogen-doped graphene supported magnetic ZnO/ZF (ZnO/ZnFe2O4) and ZnO/CF (ZnO/CoFe2O4) nanocomposites. The procured materials were scrutinized by assorted characterizations to acquire information on their chemical composition, crystalline structure and photosensitive properties. The absorption and photocatalytic performance of photocatalysts were studied via UV–Visible spectra. Photodegradation performance of the synthesized nanocomposites was estimated toward mineralization of methyl orange (MO) and malachite green (MG) dyes in aqueous solution. The high surface area of ZnO/ZF/NG and ZnO/CF/NG was suitable for adsorptive removal of MO and MG dyes. The photodegradation performance of heterojunction photocatalysts was superior to bare photocatalyst in 140 min under visible-light irradiation. Spectrophotometer, GC–MS (Gas chromatography–mass spectrometry) elucidation was carried out to expose the possible intermediates formed. Both ZnO/ZF/NG and ZnO/CF/NG were rapidly isolated from the aqueous phase by applying an external magnetic field in 20 sec and 2 min, respectively. The photocatalytic performance and stability of ZnO/ZF/NG and ZnO/CF/NG nanocomposites were confirmed by conducting 10 consecutive regeneration cycles. Owing to recyclability of ZnO/ZF/NG and ZnO/CF/NG, these heterogeneous nanocomposites might be used as cost-effective for treatment of discarded water. The observations endorse that the synthesized ternary heterogeneous nanocomposites facilitates wastewater decontamination using photocatalytic technology.  相似文献   

10.
A facile and straightforward method was adopted to synthesize ZnCo2O4/graphene nanocomposite anode. In the first step, pure ZnCo2O4 nanoparticles were synthesized using urea-assisted auto-combustion synthesis followed by annealing at a low temperature of 400 °C. In the second step, in order to synthesize ZnCo2O4/graphene nanocomposite, the obtained pure ZnCo2O4 nanoparticles were milled with 10 wt% reduced graphene nanosheets using high energy spex mill for 30 s. The ZnCo2O4 nanoparticles, with particle sizes of 25–50 nm, were uniformly dispersed and anchored on the reduced graphene nanosheets. Compared with pure ZnCo2O4 nanoparticles anode, significant improvements in the electrochemical performance of the nanocomposite anode were obtained. The resulting nanocomposite delivered a reversible capacity of 1124.8 mAh g−1 at 0.1 C after 90 cycles with 98% Coulombic efficiency and high rate capability of 515.9 mAh g−1 at 4.5 C, thus exhibiting one of the best lithium storage properties among the reported ZnCo2O4 anodes. The significant enhancement of the electrochemical performance of the nanocomposite anode could be credited to the strong synergy between ZnCo2O4 and graphene nanosheets, which maintain excellent electronic contact and accommodate the large volume changes during the lithiation/delithiation process.  相似文献   

11.
We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.  相似文献   

12.
运用改进的溶胶凝胶-原位聚合法制备出了兼具电、磁性能的PANI/ZnFe2O4纳米复合材料,借助TEM、XRD、FTIR、四探针电导率仪和VSM(振动样品磁强计)等技术研究了复合材料的结构及其电磁性能。结果表明,通过该法可以实现ZnFe2O4与PANI的有机复合,制得纳米尺寸的、ZnFe2O4与PANI相间以化学键结合的纳米复合材料;复合材料兼具电、磁性能,其导电率随ZnFe2O4含量增加而降低,饱和磁化强度随之而升高,复合物的矫顽力在所研究的含量范围内均较纯ZnFe2O4大,且随ZnFe2O4含量的增加呈先升高后降低的变化趋势。此外,对ZnFe2O4进行HNO3预处理可以有效改善复合材料的电磁性能。  相似文献   

13.
We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4–graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10−16 to 5 × 10−9 M and low detection limit of 6.2 × 10−17 M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules.  相似文献   

14.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

15.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

16.
A magnetic TiO2/ZnFe2O4 photocatalyst was prepared by a sol-gel method, and X-ray diffraction (XRD), magnetic and photocatalytic properties analysis were employed to characterize this photocatalyst. The XRD results show that ZnFe2O4 can prevent the transformation of titania from anatase to rutile. The magnetic properties analysis indicates that TiO2/ZnFe2O4 is of large saturation magnetization value and low coercivity. The photocatalytic experimental results show that TiO2/ZnFe2O4=3 and 4 are superior in photocatalytic reactivity to other proportions. TEM shows that TiO2/ZnFe2O4 has a fine core-shell fabric. After being used for four times during the photocatalytic reaction, the TiO2/ZnFe2O4 nanoparticles have good photocatalytic stability.  相似文献   

17.
A simple, yet novel process was developed where magnetic graphene-CdS (Fe3O4-CdS/G) nanocomposites were prepared by a one-pot solvothermal route in which the reduction of graphite oxide (GO) into graphene was accompanied by the generation of CdS and Fe3O4 nanoparticles. The results of TEM and XRD studies indicate the formation of Fe3O4-CdS/G nanocomposites. Besides vibration sample magnetometry, fluorescence spectra and loading of doxorubicin (DOX) reveal that this new nanocomposite possesses good superparamagnet (44.85 emu/g), good fluorescent properties and a high loading efficiency (0.98 mg/mg). The efficient, stable, and water soluble nanocomposites are confirmed to be suitable for biomedical applications.  相似文献   

18.
Photothermal therapy (PTT) has emerged as one of the promising cancer therapy approaches. As a representative photothermal agent (PTA), magnetite possesses many advantages such as biodegradability and biocompatibility. However, photothermal instability hampers its further application. Herein, we systematically synthesized three kinds of ferrite nanoparticles and detailedly investigated their photothermal effect. Compared with Fe3O4 and MnFe2O4 nanoparticles, ZnFe2O4 nanoparticles exhibited a superior photothermal effect. After preservation for 70 days, the photothermal effect of Fe3O4 and MnFe2O4 nanoparticles observably declined while ZnFe2O4 nanoparticles showed slight decrease. Furthermore, in vitro experiment, ZnFe2O4 nanoparticles showed little toxicity to cells and achieved outstanding effect in killing cancer cells under NIR laser irradiation. Overall, through synthesizing and studying three kinds of ferrite MFe2O4 nanoparticles, we obtained ferrites as PTAs and learned about their changing trend in photothermal effect, expecting it can inspire further exploration of photothermal agents.  相似文献   

19.
采用溶胶凝胶法和还原氧化石墨法制备尖晶石LiMn2O4纳米晶和石墨烯纳米片,并采用冷冻干燥法制备了石墨烯/尖晶石LiMn2O4纳米复合材料,利用XRD、SEM、AFM等对其结构及表面形貌进行表征;利用CV、充放电、EIS研究纳米复合材料的电化学性能和电极过程动力学特征。结果表明:纳米LiMn2O4电极材料及其石墨烯掺杂纳米复合材料的放电比容量分别为107.16 mAh.g-1,124.30 mAh.g-1,循环100周后,对应容量保持率为74.31%和96.66%,石墨烯可显著改善尖晶石LiMn2O4电极材料的电化学性能,归结于其良好的导电性。纳米复合材料EIS上感抗的产生与半导体尖晶石LiMn2O4不均匀地分布在石墨烯膜表面所造成局域浓差有关,并提出了感抗产生的模型。  相似文献   

20.
This study mainly focuses on the synthesis of two allotropes of graphene, graphene oxide (GO) and reduced graphene oxide (rGO), by the modified Hummers' method and chemical reduction method, respectively. Sm2O3/GO and Sm2O3/rGO nanocomposites were further synthesized in the presence of the cationic surfactant CTAB via the sol–gel method followed by the reflux method. Synthesized nanocomposites were subjected to characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV–Visible spectroscopy to explore structural, thermal, optical, and photocatalytic properties. Characteristic FTIR peaks were observed in nanocomposites, and the bond length of the Sm-O bond was calculated. The Coats-Redfern method was employed to calculate the kinetics and thermodynamic parameters. Hexagonal crystallite shapes of Sm2O3/GO and Sm2O3/rGO nanocomposites with 11.8 and 13.13 nm crystallite sizes and 3.9 and 2.5 eV optical band gaps were observed. The photocatalytic efficiency of Sm2O3/GO and Sm2O3/rGO nanocomposites was assessed against the degradation of methylene blue in the presence of sunlight, and its degradation was confirmed through FTIR. The antimicrobial activities were also performed against the bacterial strains Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号