首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
The three different ligands (Q2 to Q4) based on 2-amino-1,4-naphthoquinone (Q1), have been synthesized and explored as neutral ionophores for preparing polyvinyl chloride-based membrane sensors selective to indium (III). The addition of potassium tetrakis(4-chlorophenyl) borate and various plasticizers, viz., o-NPOE, DBP, DBBP, DOP and CN has been found to substantially improve the performance of the sensors. The best performance was obtained with the sensor no. 16 having membrane of ligand (Q2) with composition (%, w/w) ionophore Q2 (3.0%):PVC (30.0%):o-NPOE (63.0%):KTpClPB (4.0%). This sensor exhibits Nernstian response with slope 19.8 mV/decade of activity in the concentration range 2.5 × 10−7 to 1.0 × 10−2 M indium (III), performs satisfactorily over wide pH range of (2.5-7.5) with a fast response time (10 s). The sensor was also found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of acetonitrile, ethanol and methanol. The proposed sensor can be used over a period of 3.5 months without significant drift in potentials. The quantitative application of sensor was also evaluated by comparative analysis of artificially made sea water with AAS.  相似文献   

2.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

3.
A series of NH-substituted-1,4-quinones, possessing one, two, three or not chlorine, were synthesized by the reaction between different quinones (p-chloranil (1), p-toluquinone (2), or 2,3-dichloro-1,4-naphthoquinone (3)) and (-)-cis-myrtanylamine (5) via nucleophilic reactions. Moreover, 2-bromo-1,4-naphthoquinone (4) was reacted with 2-(methylthio)ethylamine (11) to produce amino-substituted naphthoquinones (12 and 13), bearing with bromine and not bromine. In addition, 2-bromo-1,4-naphthoquinone (4) was reacted with 4′-aminodibenzo-18-crown-6 (14) and 4′-aminobenzo-18-crown-6 (16) to yield crown-containing 1,4-naphthoquinones (15 and 17), respectively. New compounds were characterized, providing 1H NMR, 13C NMR, FTIR, MS-ESI, UV/Vis and elemental analysis.  相似文献   

4.
Based on IR and1H and13C NMR spectroscopic studies, the oxidation product of echinochrome with Ag2O was assigned the structure of 2,3-epoxy-7-ethyl-2,3-dihydro-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone. For part 4, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1607–1609, August, 1999.  相似文献   

5.
The reaction of triorgano-gallium and -indium etherate with heterocyclic carboxylic acids in benzene at room temperature yields complexes of the type [R2M(L)]n(M = Ga or In; R = Me or Et; L = 2-(C5H4N)CO2, 2-(C4H3N2)CO2 or 2-(C9H6N)CO2). These complexes have been characterized by elemental analysis, IR, UV-vis, NMR (1H and 13C{1H}) and mass spectral data. Complexes with L = (C5H4N)CO2- and (C9H6N)CO2- showed photoluminescence on excitation with ∼250 or ∼310 nm radiation, respectively. Single crystal X-ray structural analysis of [Me2M(O2C-C5H4N-2)]2 (M = Ga or In), revealed a dimeric structure with five-coordinate metal atoms arising from the presence of two tridentate bridging picolinate ligands.  相似文献   

6.
Treatment of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = H, R2 = CMe(O); R1 = R2 = CMe(O)) with LiCCCH2OLi (prepared in situ from HCCCH2OH and n-BuLi) affords the ferrocenyl-substituted but-2-yne-1,4-diol compounds of general formula [Fc-1-R1-1′-{CR(OH)CCCH2OH}] (R1 = R = H (1a); R1 = H, R = Me (1b); R1 = CMe(O), R = Me (1c)) in low to high yields, respectively (where Fc = Fe(η5-C5H4)2). In the case of the reactions of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = R2 = CMe(O)), the by-products [Fc-1-R1-1′-{CR(OH)(CH2)3CH3}] (R1 = R = H (2a); R1 = CMe(O), R = Me (2c)) along with minor quantities of [Fc-1,1′-{CMe(OH)(CH2)3CH3}2] (3) are also isolated; a hydrazide derivative of dehydrated 2c, [1-(CMeCHCH2CH2CH3)-1′-(CMeNNH-2,4-(NO2)2C6H3)] (2c′), has been crystallographically characterised. Interaction of 1 with Co2(CO)8 smoothly generates the alkyne-bridged complexes [Fc-1-R1-1′-{Co2(CO)6-μ-η2-CR(OH)CCCH2OH}] (R1 = R = H (4a); R1 = H, R = Me(4b); R1 = CMe(O), R = Me (4c)) in good yield. Reaction of 4a with PhSH, in the presence of catalytic quantities of HBF4 · OEt2, gives the mono- [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2OH}] (5) and bis-substituted [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2SPh}] (6) straight chain species, while with HS(CH2)nSH (n = 2,3) the eight- and nine-membered dithiomacrocylic complexes [Fc-1-H-1′-{cyclo-Co2(CO)6-μ-η2-CH(S(CH2)n-)CCCH2S-}] [n = 2 (7a), n = 3 (7b)] are afforded. By contrast, during attempted macrocyclic formation using 4b and HSCH2CH2OCH2CH2SH dehydration occurs to give [Fc-1-H-1′-{Co2(CO)6-μ-η2-C(CH2)CCCH2OH}] (8). Single crystal X-ray diffraction studies have been reported on 2c′, 4b, 4c, 7b and 8.  相似文献   

7.
The preparation of novel 2-(fluoroanilino)-1,4-naphthoquinones is presented. It takes place under mild conditions by reacting the corresponding fluoroaniline and 1,4-naphthoquinone in the presence of a Lewis acid catalyst with strong oxidation properties such as CeCl3·7H2O. This preparation was also investigated under microwave irradiation. All 1,4-naphthoquinone derivatives were characterized by UV-Vis, IR, 1H and 19F NMR, MS and cyclic voltammetry, to investigate the effect of the fluoro-substituents on their electronic properties.  相似文献   

8.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

9.
2,4,6-Triphenylpyrylium tetrafluoroborate (TPPBF4)-sensitized photoinduced electron-transfer (PET) reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]octanes 5 (a: Ar1 = Ar2 = p-MeOC6H4, b: Ar1 = Ar2 = p-MeC6H4, c: Ar1 = Ar2 = Ph) underwent novel fragmentation through their radical cations to give 1,4-diarylbutan-1,4-diones 6 accompanied by elimination of ethylene. On the other hand, 4-aryl-cyclohex-3-en-1-ones 7, p-substituted phenols 8, and 4-aryl-4-aryloxycyclohexanones 9 were produced through proton-catalyzed pathways when the PET reactions of 5 were performed in the absence of a certain base such as 2,6-di-tert-butylpyridine (DTBP). Particularly, the formation of 9 is consistent with the novel cationic rearrangement involving nucleophilic O-1,2-aryl shifts and C-1,4-aryl shifts.  相似文献   

10.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

11.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

12.
Reactions of 1,4-dibromo-2,5-difluorobenzene with two equivalents of lithium diisopropylamide at low temperature (T < −90 °C) followed by a quench with a slight excess of ClPPh2 afford 1,4-dibromo-2,5-bis(diphenylphosphino)-3,6-difluorobenzene (1) in good yields. Reacting 1 with two equivalents of BuLi followed by a quench with a slight excess of ClPR2 yield novel 1,2,4,5-tetrakis(phosphino)-3,6-difluorobenzenes 1,4-(PPh2)2-2,5-(PR2)2-C6F2 (R = Ph (2a); R = iPr (2b); R = Et (2c)) in moderate yields. Compounds 1 and 2a-c were characterized by multinuclear NMR spectroscopy and elemental analyses. In addition, molecular structures of 2a-c have been determined by single crystal X-ray crystallography. Phosphorus atoms of PPh2/PR2 substituents in 2a-c are displaced from the plane of the central phenyl ring due to steric interactions with neighboring groups.  相似文献   

13.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

14.
Reaction of AlEt3 with 2-methyl-8-quinolinol gave ethylbis(2-methyl-8-quinolinolato)aluminum complex [Al(Et)(q′)2] 1. The complex 1 provided photoluminescent Al complexes by reactions with phenols, carboxylic acid, and H2O. The α-CH2 hydrogens in the Et group of 1 was diastereotropic as revealed by 1H NMR spectroscopy because of the presence of a chiral center at Al. The chirality at Al was dynamically lost at elevated temperature in CDCl2CDCl2 and DMSO-d6, as indicated by temperature dependent 1H NMR spectroscopy. This dynamic or fluxional behavior of 1 is explained by rotation of the 2-methyl-8-quinolinolato ligand. The kinetic parameters of the dynamic process were estimated at ΔH = 135 kJ mol−1 and ΔS = 159 J K−1 mol−1 in CDCl2CDCl2 and at ΔH = 124 kJ mol−1 and ΔS = 151 J K−1 mol−1 in DMSO-d6, respectively, at 350 K. Structures of some of the obtained Al complexes were confirmed by single-crystal X-ray crystallography. These Al complexes showed photoluminescence peaks at 492-507 nm in CHCl3 with quantum yields of 7-23%.  相似文献   

15.
Cyclometalated derivatives of ring-substituted N,N-dimethylbenzylamines with controlled redox potentials as potent mediators of bioelectrochemical electron transport are reported. The cycloruthenation of R1R2R3C6H2CH2NMe2 (R1, R2, R3 = H, Me, tBuO, MeO, NMe2, F, CF3, CN, NO2) by [(η6-C6H6)RuCl(μ-Cl)]2 in the presence of NaOH/KPF6 in acetonitrile or pivalonitrile affords cyclometalated complexes [(η6-C6H6)Ru(C6HR1R2R3-o-CH2NMe2)(RCN)]PF6 [R = Me (1) and R = CMe3 (2)] in good yields. Reactions of complexes 1 and 2 with 2,2′-bipyridine (bpy) in acetonitrile or pivalonitrile result in dissociation of η6-bound benzene and the formation of [Ru(C6HR1R2R3-o-CH2NMe2)(bpy)(RCN)2]PF6 [R = Me (3) and R = CMe3 (4)]. All new compounds have been fully characterized by mass spectrometry, 1H/13C NMR, and IR spectroscopy. An X-ray crystal structural investigation of complex 1 (R1/R2/R3 = H/H/H) and two complexes of type 3 (R1/R2/R3 = MeO/H/H, MeO/MeO/H) has been performed. Acetonitrile ligands of 3 are mutually cis and the σ-bound carbon is trans to one of the bpy nitrogens. Measured by the cyclic voltammetry in MeOH as solvent, the redox potentials of complexes 3 for the RuII/III feature cover the range 320-720 mV (versus Ag/AgCl) and correlate linearly with the Hammett constants. Complexes 3 mediate efficiently the electron transport between the active site of PQQ-dependent glucose dehydrogenase (PQQ = pyrroloquinoline quinone) and a glassy carbon electrode. Determined by cyclic voltammetry the second order rate constant for the oxidation of the reduced (by d-glucose) enzyme active site by RuIII derivative of 3 (R1/R2/R3 = H) (generated electrochemically) is as high as 4.8 × 107 M−1 s−1 at 25 °C and pH 7.  相似文献   

16.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

17.
In this investigation, the quaternary aqueous solutions of chlorides charge-type 1-1*2-1*2-1 with a cation (Na+; NH4+; Mg2+; Ca2+) have been studied using the hygrometric method at 298.15 K. The water activities of the systems NH4Cl + MgCl2 + CaCl2 + H2O and NaCl + MgCl2 + CaCl2 + H2O are measured at total molalities from 0.60 mol kg−1 to saturation for different ionic-strength fractions NH4Cl or NaCl, y = 0.20, 0.50, 0.80, and z ratio ionic-strength for other solutes, with z = 0.20, 0.50 and 0.80 for each y. The obtained data allow the deduction of osmotic coefficients.  相似文献   

18.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

19.
The ternary critical mixture of 1,4-dioxane (1) + water (2) + saturated KCl (3) has a lower critical point. The density ρ and refractive index n of this system have been measured as function of temperature for nine critical mixtures along the coexistence curve below the temperature of phase-transition. The water mole fraction in free basis x2 in the mixtures extends from (0.550 to 0.880) and the molality m of KCl from 0.47 to 2.039 mol kg−1. With increase of temperature, water mole fraction and KCl molality, the obtained density decreased, while the refractive index decreases with increase in temperature, water mole fraction and molality of salt. Both represented anomalies near the critical temperature Tc. The molar fraction of critical mixture, increase less than 1%, with temperature and decrease by 10%, with water mass fraction and molality of salt. The critical density and the critical refractive index vary linearly with water mass fraction w2w2 with molality m of KCl as a third degree polynomial.  相似文献   

20.
A series of new HgI2 organic polymeric complexes, [Hg2(L1)I4]n (1), [Hg(L2)I2]n (2), [Hg(L3)I2]n (3), [Hg2(L4)I4]n (4), [Hg(L5)I2]n (5), [Hg(L6)I3](HL6) (6) {L1 = 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene, L2 = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, L3 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, L4 = 2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene, L5 = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and L6 = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene} was prepared from reactions of mercury(II) iodide with six organic nitrogen donor-based ligands under thermal gradient conditions using the branched tube method. All these compounds were structurally characterized by single-crystal X-ray diffraction. The HgI2 coordination polymers obtained with the ligands L2, L3 and L5 show one-dimensional zig-zag motifs and in these compounds the HgI2 units are connected to each other by the ligands L2, L3 and L5 through the pyridyl nitrogen atoms. The L1 and L4 ligands in the compounds 1 and 4 act as both a chelating and bridging group. In the compound 6 the ligand L6 acts as a monodentate ligand, resulting form a discrete compound. The thermal stabilities of compounds 16 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号