首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water solubility of nystatin was found enhanced by forming inclusion complex with gamma-cyclodextrin (γ-CD). Further discovery of a pleased surprise showed that the phase solubility curves of nystatin in β- and γ-CD aqueous solution were AL type, while BS type for α-CD, indicating 1:1 inclusion complexes were formed between β-CD, γ-CD and nystatin, but no inclusion complexes for α-CD, in addition, CDs with much larger ring would be more suitable for forming inclusion complexes with macrolide antibiotics. The aqueous solubility of nystatin in γ-CD solution was investigated increased with γ-CD concentration increasing. At the concentration of 24 g/100 ml for γ-CD aqueous solution, which is near to the saturated solution, water solubility of nystatin was found to be 104 μg/ml, which was 103 folds over original nystatin. Inclusion constants for γ-CD–nystatin complexes were 0.539 l/mmol, which is larger than that of β-CD–nystatin complex (0.375 l/mmol). The inclusion complex of γ-CD with nystatin was prepared and detected by infrared spectrum, results showing that the ester linkage and diene were included in the cavity of CDs, while conjugate arachidonic, carboxyl and amino group were left outside of CDs. Storing experiment showed that forming of the inclusion complexes greatly enhanced the stability of nystatin against light and oxygen.  相似文献   

2.
Effect of the ring size and asymmetry upon methylation of cyclodextrins (CDs) on their inclusion ability has been demonstrated for the inclusion complexes of native α-, β-, γ-CDs, dimethylated β-CD (DIMEB) and trimethylated β-CD (TRIMEB) with piperazine (PIZ) by PM3 and ONIOM calculations. In all complexes, PIZ prefers residing mostly in the central CD cavity. The complex stability in the order TRIMEB–PIZ > DIMEB–PIZ > α-CD–PIZ > γ-CD–PIZ > β-CD–PIZ indicates that the CD-ring asymmetry promotes the macrocycle deformation and inclusion ability. Our calculation results suggest that the inclusion complexes of both native and methylated CDs with PIZ in the gas phase are energetically stable, in addition to the β-CD–PIZ inclusion complex that has been evidenced thus far by X-ray crystallographic and spectroscopic analyses. Further calculations in the presence of water and adjacent CD molecules show that the increased intermolecular hydrogen bond interactions enhance the stability of β-CD–PIZ complex.  相似文献   

3.
Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56?mmol?L?1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD?>?α-CD?>?γ-CD?>?β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15?mmol?L?1 citric acid dissolved 10?g?L?1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.  相似文献   

4.
In this study, the effect of different CDs including α-CD, β-CD, γ-CD, hydroxypropyl β-CD (HP β-CD), sulphobutylether β-CD (SBE β-CD) and HP γ-CD on aqueous solubility of fluorometholone (Flu) was investigated. Also the phase solubility studies were performed in the presence of eye drop excipients such as benzalkonium chloride, hydroxypropyl methylcellulose (HPMC) and buffers. The aqueous solubility of Flu was increased by 8, 15, 5, 100, 65 and 135 folds in the presence of 20% w/v α-CD, β-CD, γ-CD, HP β-CD, HP γ-CD and SBE β-CD, respectively. Aqueous solubility of Flu was 0.43 ± 0.08 and 1.16 ± 0.04 mg/mL in systems containing 5% w/v HP γ-CD and SBE β-CD, respectively. The aqueous solubility of Flu in the presence of HP γ-CD was not influenced by buffer type while the phosphate buffer caused a reduction in the aqueous solubility in the presence of SBE-β-CD. Also, investigations on the solubility of Flu in water in the presence of 5% HP γ-CD and SBE-β-CD and the additives such as benzalkonium chloride and HPMC indicated that these components had no remarkable effect on the aqueous solubility of Flu. In conclusion, CD complexation is able to improve the aqueous solubility of Flu and it would be possible to prepare ophthalmic solution of Flu by this method.  相似文献   

5.
Terbinafine (TB) is an allylamine derivative used as oral and topical antifungal agent. The physicochemical properties of the complexes between TB and different cyclodextrins (CDs): α-CD, β-CD, hydroxypropylβ-CD, methylβ-CD and γ-CD, have been studied in pH 12 aqueous solutions at 25 °C and in the solid state. Different phase solubility profiles of TB in the presence of CDs have been obtained: AL type for TB with hydroxypropylβ-CD and γ-CD, AP type for the complexes with methylβ-CD and α-CD, while a BS profile was found for TB-β-CD. The apparent stability constants of the complexes were calculated at 25 °C from the phase solubility diagrams. The higher increase of TB solubility, up to 200-fold, together with the higher value of the stability constant were found for the complex with methylβ-CD. Solid systems of 1:1 drug:CD molar ratio were prepared and characterised using X-ray diffraction patterns, thermal analysis and FTIR spectroscopy. The coevaporation method can be considered the best method in preparing these solid complexes. The complexes of TB with natural CDs, except with α-CD, were crystalline, whereas the methyl and hydroxypropyl derivatives gave rise to amorphous phases. Dissolution rate studies have been performed with TB-β-CD and TB-HPβ-CD complexes, showing a positive influence of complexation on the drug dissolution.  相似文献   

6.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

7.
Complexes of Brooker’s merocyanine dye with α-, β- and γ-cyclodextrin (CD) have been characterized to determine the relative strength and thermodynamics of binding, as well as the effect of binding on the protolytic-photochemical isomerization cycle of the dye. It was found that the dye binds most tightly to β-CD, with a binding equilibrium constant of 430 M?1, in agreement with previous results (Hamasaki et al. J. Incl. Phenom. Mol. Rec. Chem. 13, 349–359 (1992)), while α-CD and γ-CD complexes have a binding constant of approximately 110 M?1 and 70 M?1, respectively, determined using absorbance and fluorescence spectroscopy. The isomerization cycle for the dye in α- and γ-CD complexes was found to be the same as for the free dye. Complexation with β-CD, however, resulted in depressed trans-to-cis photoisomerization in acidic conditions followed by spontaneous cis-to-trans isomerization (with the addition of base). Thermodynamic results also indicated differences between α-CD (ΔS° = ?48 J K?1) and β-CD (ΔS° =  +12 J K?1) complexes. There was no temperature dependence observed for the γ-CD complexes. These results can be justified in terms of the location of the dye molecule within the cyclodextrin cavity for each of the complexes.  相似文献   

8.
The complexation of naftifine (NF) and terbinafine (TB) with cyclodextrins (CDs) has been investigated by UV/visible and 1H NMR spectroscopy, ROESY techniques and also ESI-MS. Both drugs form 1:1 inclusion complexes with all the CDs tested except with α-CD, as deduced from the Benesi–Hildebrand plots and confirmed by ESI-MS and NMR spectroscopy (Job plot method). The K 11 values for NF decrease in the order β-CD > methylated β-CD > 2-hydroxypropyl-β-CD >γ-CD. The determination of the enthalpy and entropy provides information about the main driving forces in the process. The stability constants of the complexes NF–β-CD, TB–β-CD and TB–γ-CD determined by 1H NMR spectroscopy are in agreement with the values obtained by UV. For TB–β-CD, the value is higher, due to the fact that the length of the TB aliphatic chain allows a deeper inclusion of the naphthalene group inside the corresponding β-CD molecule, according to the 2D ROESY experiments.  相似文献   

9.
The low aqueous solubility of celecoxib (CCB) hampers its oral bioavailability and permeation from aqueous environment through biological membranes. The aim of this study was to enhance the aqueous solubility of CCB by complexation with cyclodextrin (CD) in the presence of water-soluble polymer. The effects of different CDs (αCD, βCD, γCD, 2-hydroxypropyl-β-cyclodextrin and randomly methylated β-cyclodextrin (RMβCD)) and mucoadhesive, water-soluble polymers (hydroxypropyl methylcellulose (HPMC), chitosan and hyaluronic acid) were investigated. The phase solubility profiles and CCB/CD complex characteristics were determined. RMβCD exhibited the greatest solubilizing effect of the two CDs tested. However, γCD was also selected for further investigations due to its safety profile. Addition of polymer to the aqueous CD solutions enhanced the CD solubilization. Formation of CCB/RMβCD/HPMC and CCB/γCD/HPMC ternary complexes resulted in 11 and 19-fold enhancement in the apparent complexation efficiency in comparison to their CCB/CD binary complex, respectively. The size of ternary complex aggregates in solution were determined to be from about 250 to about 350 nm. The data obtained from Fourier transform infra-red, differential scanning calorimetry and powder X-ray diffraction indicated presence of CCB/CD inclusion complexes in the solid state. Proton nuclear magnetic resonance data demonstrated that CCB was partially and totally inserted into the hydrophobic central cavities of RMβCD and γCD.  相似文献   

10.
The aim of the study was to synthesize and characterization the inclusion complexes of amlodipine besylate (AML) drug with β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) which has antioxidating activity property. The guest/host interaction of AML with β-CD and γ-CD in order to complexation drug in β-CD and γ-CD were investigated. The interaction inclusion complexes was characterized by fourier transform infrared and ultraviolet–visible spectroscopies. The formation constant was calculated by using a modified Benesi–Hildebrand equation at 25 °C. The stoichiometry of inclusion complexes was found to be 1:1 for β-CD and γ-CD with AML drug. The antioxidant activity of AML drug and its inclusion complexes were determined by the scavenging of stable radical 2,2′-diphenyl-1-picrylhydrazyl (DPPH·). Kinetic studies of DPPH· with AML and CDs complexes were done. The experimental results confirmed the forming of AML complexes with CDs also these indicated that the AML/β-CD and AML/γ-CD inclusion complexes was the most reactive than its free form into antioxidant activity.  相似文献   

11.
Complexation of ketoconazole (KET), a broad-spectrum antifungal drug, with β- and γ-cyclodextrins (CDs), heptakis (2,6-di-O-methyl)-β-CD (2,6-DM-β-CD), heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), 2-hydroxypropyl-β-CD (2HP-β-CD) and carboxymethyl-β-CD (CM-β-CD) was studied. The stability constants were determined by the solubility method at pH = 6 and for 2,6-DM-β-CD and CM-β-CD at pH = 5. At pH = 6, the stability constants increased in the order: TM-β-D < γ-CD < 2HP-β-CD < β-CD < CM-β-CD < 2,6-DM-β-CD. At pH = 5, due to the increased ionization of KET, the stability constant with CM-β-CD increased and with 2,6-DM-β-CD decreased. For complexes of KET with 2HP-β-CD and 2,6-DM-β-CD, the thermodynamic parameters of complexation were determined from the temperature dependence of the corresponding stability constants. For β–γ and TM-β-CD complexes, calculations using HyperChem 6 software by the Amber force field were carried out to gain some insight into the host–guest geometry.  相似文献   

12.
Telmisartan (TEL) is a BCS Class II drug having dissolution rate limited bioavailability. The aim of work was to enhance the solubility of TEL so that bioavailability problems are solved. β-Cyclodextrin (β-CD) based nanosponges (NSs) were formed by cross-linking β-CD with carbonate bonds, which were porous as well as nanosized. Drug was incorporated by solvent evaporation method. The effect of ternary component alkalizer (NaHCO3) on solubility of TEL was studied. In order to find out the solubilization efficiency of NS, phase solubility study was carried out. Saturation solubility and in vitro dissolution study of β-CD complex of TEL was compared with plain TEL and NS complexes of TEL. The NS and NS complexes of TEL were characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance and scanning electron microscope. It was found that solubility of TEL was increased by 8.53-fold in distilled water; 3.35-fold in 0.1 N HCl and 4.66-fold in phosphate buffer pH 6.8 by incorporating NaHCO3 in drug–NS complex than TEL. It was found that the NaHCO3 in NS based complex synergistically enhanced dissolution of TEL by modulating microenvironmental pH and by changing amorphization of the drug. The highest solubility and in vitro drug release was observed in inclusion complex prepared from NS and NaHCO3. An increase of 54.4 % in AUC was seen in case the ternary NS complex whereas β-CD ternary complex exhibited an increase of 79.65 %.  相似文献   

13.
A lot of interest has been seen in computational methods that provide reliable atom accurate structures of different molecular systems. In this article, we describe the complexation of alprazolam (ALP) with three cyclodextrins, i.e., α-, β- and γ-CD. ROESY spectra showed that no complex was formed between ALP and α-CD however, ring A of ALP formed ICs with β- and γ-CD. Therefore, structures of ALP/β-CD and ALP/γ-CD were obtained by a combination of NMR (2D-ROESY) and computational methods by a quantitative ROESY approach. Here we determined the structures of CD ICs by a method recently used in our laboratory and then the structures were obtained independently by DFT (B3LYP functional and def2-TZVP basis set). The structures obtained by both methods were compared with each other. Results demonstrated that our method provides reasonable structures comparable to DFT, and can be used to obtain highly atom accurate structures of CD inclusion complexes. Quantitative ROESY analysis of MM and MD structures consume less time and are cheap as compared to DFT, which is highly CPU demanding and time taking. Negative values of binding energy showed that the process of inclusion was spontaneous and complexes formed were stable. The large negative value of binding energy for ALP/β-CD as compared to ALP/γ-CD showed a higher binding affinity of ALP towards β-CD. FMO studies also revealed the higher HOMO-LOUMO gap for inclusion complexes as compared to pure ALP. Intermolecular H-bonds formed in both the complexes are also one of the forces responsible for inclusion complex formation.  相似文献   

14.
Molecular inclusion complexes of usnic acid (UA) with β-cyclodextrin (β-CD) and 2-hydroxypropyl β-cyclodextrin (HP β-CD) were prepared by the co-precipitation method in the solid state in the molar ratio of 1:1. Structural complexes characterization was based on different methods, FTIR, 1H NMR, XRD and DSC. Parallel to the complex by the above methods, corresponding physical mixtures of UA with cyclodextrins and complexing agents (β-CD, HP β-CD and UA) were analyzed. The results of DSC analysis showed that, at around 200 °C, the endothermal peak in the complexes with cyclodextrins originating from the UA melting has disappeared. Complex diffractogram patterns do not contain peaks characteristic for the pure UA. They are more appropriate to cyclodextrin diffractogram. This fact points to the molecular encapsulation of UA in the cyclodextrin cavity. Chemical shifts in 1H NMR spectra after the inclusion of UA into the cyclodextrin cavity, especially H-3 protons (0.0012 and 0.0102 ppm in the β-CD and HP β-CD, respectively) and H-5 and H-6 (0.0134 ppm) and hydrogen from CH3 (0.0073 ppm) HP β-CD also points to the formation of molecular inclusion complexes. The improved solubility of UA in water was achieved by molecular incapsulation. In the complex with β-CD the solubility is 0.3 mg/cm3, with HP β-CD 4.2 mg/cm3 while the uncomplexed UA solubility is 0.06 mg/cm3. The microbial activity of UA and both complexes was tested against eight bacteria and two fungi and during the test no reduced activity of UA in the complexes was observed.  相似文献   

15.
Fluorescence spectroscopy was used to characterize inclusion compounds between 4-amino-1,8-naphthalimides (ANI) derivatives and different cyclodextrins (CDs). The ANI derivatives employed were N-(12-aminododecyl)-4-amino-1,8-naphthalimide (mono-C12ANI) and N,N′-(1,12-dodecanediyl)bis-4-amino-1,8-naphthalimide (bis-C12ANI). The CDs used here were α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD and HP-γ-CD. The presence of CDs resulted in pronounced blue-shifts in the emission spectra of the ANI derivatives, with increases in emission intensity. This behavior was parallel to that observed for the dyes in apolar solvents, indicating that inclusion complexes were formed between the ANI and the CDs. Mono-C12ANI formed inclusion complexes of 1:1 stoichiometry with all the CDs studied. Complexes with the larger CDs (HP-β-CD, HP-γ-CD and γ-CD) were formed by inclusion of the chromophoric ANI ring system, whereas the smaller CDs (α-CD, HP-α-CD and β-CD) formed complexes with mono-C12ANI by inclusion of the dodecyl chain. Bis-C12ANI formed inclusion complexes of 1:2 stoichiometry with HP-β-CD, HP-γ-CD and γ-CD, but did not form inclusion complexes with α-CD, HP-α-CD and β-CD. The data were treated in the case of the large CDs using a Benesi-Hildebrand like equation, giving the following equilibrium constants: mono-C12ANI:HP-β-CD (K 11 = 50 M?1), mono-C12ANI:HP-γ-CD (K 11 = 180 M?1), bis-C12ANI:HP-β-CD (K 12 = 146 M?2), bis-C12ANI:HP-γ-CD (K 12 = 280 M?2).  相似文献   

16.

Doxycycline hyclate is Biopharmaceutical Classification System, class I drug (high solubility and high permeability), but it is associated with poor photostability. It is in the class of tetracycline antibiotic, which is used to treat various infections, but its bioavailability is compromised due to its sensitivity to light and aqueous instability. In this paper, the influence of inclusion complexation with different cyclodextrins, i.e., αCD, γCD, HPβCD and RMβCD, on the photostability of doxycycline hyclate in aqueous media was investigated. Host–guest inclusion complexes were prepared by freeze- drying method. The prepared complexes were characterized for drug content, SEM, XRPD, in vitro permeation studies and photostability studies. XRPD showed diffused peaks for most of the complexes, while SEM showed irregularly shaped particles. The formulation D20 (Drug: γCD in 1:20 molar ratio) showed the highest % drug content (83.72?±?1.2%), and the formulations D1 (Drug: αCD in 1: 2 molar ratio) showed the lowest % drug content among all the CD complexes. It was found that the photodegradation of the drug was reduced significantly upon complexation. For Drug: CD complexes, the photostability of the aqueous solution of drug/CD complexes was found to be in the order of γCD?>?RMβCD?>?HPβCD?>?αCD with maximum photostability shown by Drug: γCD (1:20 molar ratio) complex. The obtained results suggested that cyclodextrin complexation can be used as an alternative approach for increasing the photostability of doxycycline hyclate.

  相似文献   

17.
The formation of inclusion complexes with para-sulfonated calix[n]arene (PSC[n]A) was studied for carbamazepine (CBMZ), a poorly water soluble anticonvulsant drug. The effect of PSC[4]A and PSC[6]A on aqueous solubility of carbamazepine was studied extensively. The complete complexation of the drug was achieved after 48 h of shaking with PSC[n]A in water and evaporation of water to get solid complex. The interaction between PSC[n]A and CBMZ in solid state inclusion complexes was accomplished by aqueous phase solubility studies, HPLC, DSC, PXRD, FTIR, UV–Vis, and FT-Raman spectroscopy. The solubility of CBMZ increases as a function of PSC[n]A concentration. The results of the two phase solubility experiments are in good conformity to signify the formation of 1:1 (PSC[6]A:CBMZ) and 2:1 PSC[4]A:CBMZ complexes. The order of dissolution rate of CBMZ is inclusion complex > physical mixture > drug alone. The purpose of this study was to enhance solubility resulting in high dissolution rate and bioavailability of this essentially water insoluble drug.  相似文献   

18.
Complexation of ebastine (EB) with hydroxypropyl and methyl-β-cyclodextrin (HP-β-CD and Me-β-CD) was studied in aqueous solutions and in the solid state. The formation of inclusion complexes in aqueous solutions was analysed by the solubility method. The assays were designed using low CD concentrations compared with the solubility of these derivatives in order to avoid non-inclusion phenomena and to obtain a linear increase in EB solubility as a function of CD concentration. The values of complexation efficiency for HP-β-CD and Me-β-CD were 1.9 × 10?2 and 2.1 × 10?2, respectively. It seems that the non polar character of the methyl moiety slightly favoured complexation. In relation to solid state complexation, 1:1 EB:CD systems were prepared by kneading, and by heating a drug-CD mixture at 90 ºC. They were analysed using X ray diffraction analysis by comparison with their respective physical mixtures. A complex with a characteristic diffraction pattern similar to that of the channel structure of β-CD was formed with Me-β-CD in 1:1 melted and 1:2 EB:CD kneaded systems. Complexation with HP-β-CD was not clearly evidenced because only a slight reduction of drug crystallinity was detected. Finally, the loading of EB in two β-CD polymers cross-linked with epichlorohydrin yielded 7.3 and 7.7 mg of EB/g polymer respectively.  相似文献   

19.
The aim of present study was to evaluate the effect of natural, synthetic cyclodextrins (CDs) and CD mixtures on aqueous solubility of beclomethasone dipropionate (BDP). The phase solubility studies were done in the presence of 6 CDs. Furthermore, aqueous solubility of BDP was tested in the presence of CD mixtures. The solubility of BDP in water was increased by 30, 77, 155 and 30 folds in the solution containing 20%?w/v α-CD, hydroxylpropyl β-CD (HP-β-CD), hydroxypropyl γ-CD (HP-γ-CD) and sulphobutylether β-CD (SBE-β-CD), respectively. CD mixtures had remarkable effect on the aqueous solubility of BDP so that solubility in water increased between 200 and 1,500 times in the presence of different CD mixtures. Further addition of sodium acetate to the solubilisation medium reduced the aqueous solubility. In conclusion, CD complexation was able to improve the aqueous solubility of BDP. The synergistic effect of cyclodextrin mixture was observed.  相似文献   

20.
Oleuropein (OLE) is a major phenolic compound of olive leaf (Olea europaea) and has many therapeutic properties associated with olive leaf extracts. This work concerns the determination of the inclusion complex constant between OLE and cyclodextrins (CDs), based on the competition of two guests for the CD cavity, one being a dye and the other OLE. The dye used was methylorange (MO) and pH 3 was selected, since MO molar absorptivity at 500 nm is at maximum in this condition. A solution of MO, OLE, and α-CD or β-CD, with citrate buffer was used for determining the absorbance values. From these data and by appropriate mathematical modeling, the equilibrium constant for the formation of OLE:CD complexes were obtained: for OLE:α-CD K = 1,352.4 L mol?1 (R 2 = 0.9975) and for OLE:β-CD K = 1,827.9 L mol?1 (R 2 = 0.9991). The results show that OLE has a greater affinity for β-CD than for α-CD and given the relatively high constants, OLE:CD complexes have potential for giving longer shelf lives for OLE medicinal and food additive preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号