首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了在表面活性剂十二烷基硫酸钠(SLS)的活化作用下,桑色素修饰的纳米TiO2分离富集,电感耦合等离子体原子发射光谱(ICP-AES)测定Cr3+和A l3+的新方法。考察了溶液pH、洗脱条件和干扰离子等因素对分析物分离富集的影响。结果表明,在pH 3.0时,Cr3+和A l3+可被桑色素修饰的纳米TiO2定量富集,吸附的金属离子可用1.5 mL 0.50 mol/L HC l溶液完全洗脱。在优化的实验条件下,纳米TiO2-桑色素对Cr3+和A l3+的吸附容量分别为9.69 mg/g和12.76 mg/g。本法对Cr3+和A l3+的检出限(3σ)分别为:0.21和0.49 ng/mL,相对标准偏差(RSD)分别为2.2%和1.6%(n=11,C=50 ng/mL)。本法应用于藏药和扇贝标准样品(GBW 10024)中Cr3+和A l3+的测定,测定值与标准值基本吻合,分析结果满意。  相似文献   

2.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

3.
A new method using acetylsalicylic acid (aspirin) modified SiO2 nanoparticles (nanometer SiO2-aspirin) as a solid-phase extractant (SPE) has been developed for the preconcentration of trace amounts of Fe(III) prior to their determination by inductively coupled plasma optical emission spectrometry. The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the sorption capacity of nanometer SiO2-aspirin was found to be 1.28 mmol g−1. The preconcentration factor is 50. The detection limit (3σ) for Fe(III) was 0.49 ng mL−1. The method was validated by analyzing two certified reference materials (GBW 08301, river sediment and GBW 08303, polluted farming soil), and the results obtained are in good agreement with standard values. The method was also applied to the determination of trace Fe(III) in biological and water samples with satisfactory results. Correspondence: Xiangbing Zhu, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

4.
A new method is presented for simultaneous preconcentration of trace Fe(III) and Cr(III) by using polyacrylic acid-alumina as a sorbent. The separation/preconcentration conditions of analytes were investigated, including effect of pH, flow rate, elution conditions, sample volume, and interfering ions. At pH 4, the maximum sorption capacities of Fe3+ and Cr3+ were 8.0 and 13.0 mg/g, respectively, by the column method. The linearity was maintained in the concentration range of 0.175-6.0 x 10(3) ng/mL for iron and 0.175-8.0 x 10(3) ng/mL for chromium in the original solution. The RSD values under optimum conditions were +/- 1.73 and +/- 1.28% for 2.0 microg/mL Fe and Cr, respectively. The preconcentration factor was 400 for both of the elements, and detection limits were 0.025 and 0.023 ng/mL for Fe and Cr in the original solutions. The proposed method was successfully applied to the determination of trace amounts of Fe and Cr in plant samples.  相似文献   

5.
A new method that utilizes p-dimethylaminobenzaldehyde-modified nanometer SiO2 (SiO2-p-DMABD) as a solid phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. The adsorption capacity of nanometer SiO2-p-DMABD was found to be (mg g− 1) Cr(III): 6.2, Cu(II): 18.6, Fe(III): 4.7 and Pb(II): 6.0 at pH 4. The adsorbed metals were quantitatively eluted with 4 mL of 1.0 mol L− 1 HCl. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr(III), Cu(II), Fe(III) and Pb(II) were 0.79, 1.27, 0.40 and 1.79 ng mL− 1, respectively. The proposed method achieved satisfied results when it was applied to the determination of trace Cr(III), Cu(II), Fe(III) and Pb(II) in biological and water samples.  相似文献   

6.
建立了微晶蒽分离富集环境水样中痕量Co(II)的方法。在pH3.0条件下,1-亚硝基-2-萘酚与Co(II)形成红棕色螯合物被微晶蒽定量吸附,能使Co(II)与Pb(II)、Ni(II)、Mn(II)、Cu(II)、Cd(II)、Zn(II)、Fe(III)、Cr(III)、Al(III)等常见离子分离。本法富集倍数达100倍,检出限为0.14μg/L,回收率97.5%~105%,已应用于不同水样中Co(II)的测定。  相似文献   

7.
Bağ H  Türker AR  Lale M  Tunçeli A 《Talanta》2000,51(5):895-902
A rapid, sensitive and accurate method for the separation, preconcentration and determination of Cr(III) and Cr(VI) in water samples is described. Chromium species can be separated by biosorption on Saccharomyces cerevisiae immobilized on sepiolite and determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for separation and preconcentration (pH, bed height, flow rate and volume of sample solution) were evaluated. Recovery of the chromium was 96.3+/-0.2% at 95% confidence level. The breakthrough capacity of the adsorbent was found as 228 mumol g(-1) for Cr(III). The proposed method was applied successfully to the determination of Cr(III) and Cr(VI) in spiked and river water samples.  相似文献   

8.
施踏青  梁沛  李静  江祖成  胡斌 《分析化学》2004,32(11):1495-1497
提出了纳米TiO2分离富集,GFAAS测定水样中痕量铅的新方法。详细考察了纳米TiO2对铅的吸附行为,结果表明:在pH4.0时,Pb^2 可被纳米TiO2定量富集,吸附于纳米TiO2上的Pb^2 可用0.1mol/L的硝酸完全解脱。本法对Pb^2 的检出限为52ng/L,相对标准偏差为4.7%(n=10,C=0.02mg/L)。本法已用于实际水样中铅的测定,结果满意。  相似文献   

9.
A new analytical method using 1-(2-pyridylazo)-2-naphthol (PAN)-modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Sb(III) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions, and effects of interfering ions for the recovery of the analyte were investigated. The adsorption capacity of nanometer SiO2-PAN was found to be 186.25 micromol/g at optimum pH and the LOD (3sigma) was 0.60 microg/L. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Sb(III) on nanometer SiO2-PAN was achieved in 10 min. Adsorbed Sb(III) was easily eluted with 4 mL 2 M hydrochloric acid. The maximum preconcentration factor was 62.20. The method was applied for the determination of trace amounts of Sb(III) in various water samples (tap, mineral water, and industrial effluents).  相似文献   

10.
We describe a nanometer sized composite material made from titanium dioxide and silica that was chemically modified with 4-aminophenylarsonic acid and used for selective solid-phase extraction, separation and preconcentration of of aluminum(III) prior to its determination by ICP-OES. Under optimized conditions, the static adsorption capacity is 56.58?mg?g?1, the enrichment factor is 150, the relative standard deviation is 1.6% (for n?=?11), and the detection limit (3?s) is 60?pg?mL?1. The method was validated by analyzing the reference materials GBW 09101 (hair) and GBW 10024 (scallop) and successfully applied to the determination of trace Al(III) in spiked water samples and human urine, with recoveries ranging from 96% to 101%.
Figure
4-aminophenylarsonic acid modified nanometer TiO2/SiO2 composite material has been developed to separate and concentrate trace Al(III) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in column mode, and the new adsorbent presents high selectivity and adsorption capacity for the solid phase extraction of trace Al(III).  相似文献   

11.
A new method using dithizone-modified TiO2 nanoparticles (nanometer TiO2-DZ) as solid-phase extractant has been developed for the simultaneous preconcentration of trace amounts of chromium and lead prior to their measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The preconcentration conditions of the analytes, including the effects of pH, sample flow rate and volume, elution conditions and interfering ions on the recovery of the analytes were investigated. At pH 5, the adsorption capacity of the nanometer TiO2-DZ was found to be 5.8 mg g−1 and 22.5 mg g−1 for Cr and Pb, respectively. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr and Pb were 0.38 and 1.72 ng mL−1, respectively. The proposed method was applied to the determination of trace chromium and lead in foodstuffs, plants and water samples with satisfactory results.  相似文献   

12.
In this study, a new 4-(2-morinyldiazenyl)-N-(3-(trimethylsilyl)propyl)benzamide modified silica gel (SG-MTPB) sorbent was prepared and characterized by FT-IR spectroscopy and studied for separation and preconcentration of Sc(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace Sc(III) were optimized using both batch and column procedures. At pH 3, Sc(III) could be quantitatively adsorbed on the new sorbent. And the adsorbed Sc(III) could be completely eluted by using 2 mL of 6 mol L(-1) of HCl+2% CS(NH(2))(2). Most common coexisting ions did not interfere with the separation and preconcentration of Sc(III) at optimal conditions. The maximum static adsorption capacity of the sorbent for Sc(III) was 600 micaromol g(-1) while the time of 95% adsorption was less than 2 min. The detection limit of present method was found to be 0.085 micarog g(-1), and the relative standard deviation (R.S.D.) was lower than 1.3%. The method was also successfully applied to the preconcentration of trace Sc(III) in the environmental samples with satisfactory results.  相似文献   

13.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

14.
Cloud point extraction (CPE) was applied as a preconcentration step prior to graphite furnace atomic absorption spectrometry (GFAAS) determination of manganese(II) and iron(III) in water samples. After complexation with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), the analytes could be quantitatively extracted to the phase rich in the surfactant p-octylpolyethyleneglycolphenylether (Triton X-100) and be concentrated, then determined by GFAAS. The parameters affecting the extraction efficiency, such as solution pH, concentration of PMBP and Triton X-100, equilibration temperature and time, were investigated in detail. Under the optimum conditions, preconcentration of 10 ml of sample solution permitted the detection of 0.02 ng ml(-1) of Mn(II) and 0.08 ng ml(-1) of Fe(III) with enrichment factors of 31 and 25 for Mn(II) and Fe(III), respectively. The proposed method was applied to determination of trace manganese(II) and iron(III) in water samples with satisfactory results.  相似文献   

15.
A new modified nanometer SiO2 using 5-sulfosalicylic acid (SSA) as a solid-phase extractant was used for separation, preconcentration and determination of Fe(III) in aqueous solutions by inductively coupled plasma atomic emission spectrometry (ICP-AES). Its adsorption and preconcentration behaviour for Fe(III) in aqueous solutions was investigated using static procedures in detail. The optimum pH value for the separation of Fe(III) on the newly designed sorbent was 3.5. Complete elution of the adsorbed Fe(III) from the nanometer SiO2-SSA was carried out using 2.0 mL of 0.01 mol L− 1 of HCl. The time of 90% sorption was less than 2 min for Fe(III) at pH 3.5. Common coexisting ions did not interfere with the separation and determination of Fe(III) at pH 3.5. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 44.01 mg of Fe(III) per gram of sorbent. The relative standard deviation (RSD) of the method under optimum conditions was 3% (n = 5). The procedure was validated by analyzing three certified reference materials (GBW 08301, GBW 08504, GBW 08511), the results obtained were in good agreement with standard values. The nanometer SiO2-SSA was successfully employed in the separation and preconcentration of the investigated Fe(III) from the biological and natural water samples yielding 100-folds concentration factor.  相似文献   

16.
A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350???g?L-1 of Pb(II), and between 2.4 and 520???g?L-1 of Cr(III) for an 800-mL sample. The detection limit (3?s, N?=?10) for Pb(II) and Cr(III) ions is 0.43 and 0.55???g?L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples.
Figure
Recovery percentage of Pb(II) and Cr(III) ions at different solution volumes.  相似文献   

17.
张蕾  张敏  康平利  李娜 《应用化学》2010,27(10):1225-1229
以处理过的纳米TiO2为微柱吸附材料,采用流动注射技术进行微量碲的分离富集,探讨了溶液的pH值、试样流速、试样体积、洗脱液浓度和用量以及干扰离子等因素的影响。 实验结果表明,pH值在8~9.5范围内,纳米TiO2对Te(Ⅳ)具有良好的吸附性能,吸附率接近99%,动态饱和吸附容量为37.02 mg/g;选用2 mL 0.5 mol/L NaOH溶液可将吸附的Te(Ⅳ)完全洗脱,富集倍数为30。 本法的检出限(3σ)为0.013 mg/L,相对标准偏差为RSD=1.99%。 将本法应用于水样的分析,碲的回收率在98%~103%之间,结果令人满意。  相似文献   

18.
Zhang N  Suleiman JS  He M  Hu B 《Talanta》2008,75(2):536-543
A new chromium(III)-imprinted 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS)-functionalized silica gel sorbent was synthesized by a surface imprinting technique and was employed as a selective solid-phase extraction material for speciation analysis of chromium in environmental water samples prior to its determination by inductively coupled plasma mass spectrometry (ICP-MS). The prepared Cr(III)-imprinted silica gel shows the selectivity coefficient of more than 700 for Cr(III) in the presence of Mn(II). The static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cr(III) were 30.5 mg g(-1) and 13.4 mg g(-1). It was also found that Cr(VI) could be adsorbed at low pH by the prepared imprinted silica gel, and this finding makes it feasible to enrich and determine Cr(VI) at low pH without adding reducing reagents. The imprinted silica gel sorbent offered a fast kinetics for the adsorption and desorption of both chromium species. Under the optimized conditions, the detection limits of 4.43 pg mL(-1) and 8.30 pg mL(-1) with the relative standard deviations (R.S.D.s) of 4.44% and 4.41% (C=0.5 ng mL(-1), n=7) for Cr(III) and Cr(VI) were obtained, respectively. The proposed method was successfully applied to the speciation of trace chromium in environmental water samples. To validate the proposed method, two certified reference materials were analyzed and the determined values were in a good agreement with the certified values. The developed method is rapid, selective, sensitive and applicable for the speciation of trace chromium in environmental water samples.  相似文献   

19.
A new method using a microcolumn packed with nanometer TiO2 as solid-phase extractant has been developed for the simultaneous preconcentration of trace amounts of Cu, Mn, Cr and Ni prior to their measurements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes have been investigated. The adsorption capacity of nanometer TiO2 was found as 0.108, 0.149, 0.039 and 0.034 mmol g−1 for Cu, Cr, Mn and Ni, respectively. The separation of analytes can be achieved from water samples with a concentration factor of 50 times. The method has been applied for the determination of trace elements in biological sample and lake water with satisfactory results.  相似文献   

20.
采用纳米TiO2化学吸附法富集水样中痕量5-磺基水杨酸。5-磺基水杨酸含有酚羟基(OH)和羧基(COOH)可与TiO2表面上的羟基(OH)发生酯化反应,形成稳定的六元环结构。纳米TiO2对5-磺基水杨酸的吸附量≤18.47mg/g,在pH2.5、吸附时间20min、吸附剂用量1.80g/L的条件下,纳米TiO2对试样中5-磺基水杨酸的吸附率达到99.0%,以5mL2mol/L NaOH为洗脱液,洗脱率达99.8%,对试样中5-磺基水杨酸的富集倍数达50倍,检出限(3σ,n=11)为26.7μg/L。本法操作简便,直接用于九龙江和海水中痕量5-磺基水杨酸的测定,结果准确,回收率达到95.5%~98.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号