首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In faded cells of Blepharisma kept in a standard saline solution containing bacteria which had been cultured on agar plates containing glucose and polypepton, threshold light intensity for step-up photophobic response elevated. This result suggests that red pigment (blepharismin) contained in Blepharisma cells is involved in the step-up photophobic response. The pH of the aqueous solution of the red pigment was found to decrease when light was applied, indicating that the pigment releases H+ in response to light stimulation. However, faded pigment preparation by light irradiation did not show pH decrease. In the living cells faded by light irradiation, threshold light intensity for the step-up photophobic response was raised. Results suggest that H+ release from the red pigment induced by light irradiation might be responsible for the step-up photophobic response of the cells.  相似文献   

2.
Red blepharismas (B. japonicum) in Pyrex test tubes exposed near noon to clear summer daylight are killed. If similarly exposed at dawn, they turn blue as the red pigment blepharismin is oxidized to oxyblepharismin. and they resist further exposure to daylight. Red blepharismas similarly exposed to sunlight at dawn in winter are killed. The experiments reported seek the reasons for the seasonal difference in photosensitivity and the way in which blepherismas survive winter. Red blepharismas (B. japonicum) exposed to visible and near ultraviolet (UV) radiation from two 4W coolwhite fluorescent lamps (5 Wm-2; 2151ux) resist an 8h exposure between 15° and 34°C. turning blue. Blue and colorless blepharismas also resist 8h exposures to the light at 15° and 34°C. At 8°C both red and blue populations are killed, death appearing to result from deranged water regulation; colorless ones are not affected. Red blepharismas are killed by fluorescent light at 8° C even when the near-UV radiation is largely excluded by a Corning glass filter; blue and colorless ones are not. The reds are also killed at all temperatures by sunlight filtered through Pyrex glass if exposed near noon on a sunny day. At temperatures above 8° C they are not killed by direct sunlight passed through glass if exposed at dawn, but they turn blue. Blepharismas in fluorescent light divide at the same rate as controls in the dark, but they get smaller. When exposed to sunlight at dawn, at temperatures above 8°C. blepharismas in Pyrex test tubes containing stones or fruiting spikes of grass, hid in the shade of these objects, apparently by random movements. If exposed under similar conditions near noontime, the majority failed to find cover and were killed. Blepharismas survive in summer by avoiding sunlight, in winter by encystment. Colorless protozoans Paraineciurn multimicronucleatum, Colpidium colpoda and Spirostomum teres resisted killing in summer sunlight and with fluorescent light at all temperatures tested.  相似文献   

3.
A plastid mRNA (5 × 105 mol wt) appears as a burst 3 h after white light greening of steady state dark grown plants of Spirodela oligorrhiza. In this species, chlorophyll synthesis begins after 12 h. The light requirement is different from the pulse of far-red reversible red light required to abolish the lag of chlorophyll synthesis in many species, including Spirodela. Continuous high energy far-red is not stimulatory. When the illumination is not continued throughout the time of incorporation, the stimulation is minimal. Low energy blue and red light are stimulatory, and green and far-red light are ineffectual. Blue light was > 5 times as effective as red light at many dose levels. Illumination with 3 × 1017 quanta/m2/s (50pEm/cm2/s) blue light at 476 nm gave about half maximum stimulation.  相似文献   

4.
The intracellular localization and orientation of the receptors for the blue light-induced phototropism in the fern Adianrum protonemata, phytochrome and the blue light-absorbing pigment, were investigated by combining the techniques of cell centrifugation and of microbeam irradiation with linearly polarized light. The phototropic response was induced in the cells even after they had been centrifuged basipetally to spin down the endoplasm from the apical region. When a polarized blue microbeam was given to a flank of the apical region of the protonema, the phototropic response after compensation of phytochrome effect by far-red light was most effectively induced when the polarization plane was parallel to the long axis of the cell. If protonemata were pre-irradiated with blue and far-red light, the phototropic response was mediated through phytochrome alone. If such pre-irradiated protonemata were similarly irradiated with a polarized blue microbeam, polarized light vibrating parallel to the cell axis was again most effective in inducing the response. These results indicate that both the blue light-absorbing pigment and the phytochrome responsible for the blue light-induced phototropism in Adiantum are confined to the plasma membrane and/or the ectoplasm and that the transition moments of their blue-absorption bands are nearly parallel to the cell surface.  相似文献   

5.
Abstract— When exposed, in the presence of molecular oxygen, to light intensities of the order of3–30 W m-2, the ciliate Blepharisma japonicum changes its color from red to blue, because of the photooxidation of the photoreceptor pigment, blepharismin, to pxyblepharismin. Both red-and blue-pigmnentes cells show step-up photophobic responses. The action spectra f the light-dependent behaviour of the red and the blue form of Blepharisma have been determined; their structure is very similar to that the photosensing and phototransducing properties of blepharismin are maintained in its photooxidized form. oxyblepharismin.  相似文献   

6.
Abstract— Peak responsivity of photoattraction in Halobacterium halobium cells shows steady hypsochromic shift from 590 nm wavelength under low irradiance conditions to 560 nm under high irradiance conditions. Inversion of the photoattractant response, as dependent on blue vs red background light, is compatible with the known properties of photochromic sensory rhodopsin-I (SR-I) with ground state maximum absorption at 587 nm. Relaxation of the photoattractant response in H. halobium, as a function of wavelength and irradiance, gives a hint at an antagonistic pigment or intermediate state, different from ground state SR-I, with peak sensitivity at 620 nm or even above. The less sensitive photoattractant response at 560 nm persists without photorelaxation and represents the peak responsivity under high irradiance conditions.  相似文献   

7.
Characteristic differences in the light intensity curves of photosynthesis after growth of cells of Acetabularia mediterranea Lamour. (A. acetabulum (L.) Silva) in weak and strong white light were similar to those for red and blue light-treated cells, respectively. This indicated that responses to white light quantity and those to light quality might be causally related. Small differences in the thylakoid polypeptide composition of cells grown in high and low intensities of white light were not significant and thus did not help to clarify whether the adaptations to blue or red light, respectively, were the same. When the red to blue-light ratio was varied, keeping the total photon fluence rate constant, the photosynthetic capacity (red light saturated O2-production) was dependent on blue light irradiance in a logarithmic fashion. The specific influence of red light was not detectable, indicating that only blue light was effective for light irradiance adaptation in Acetabularia. The situation was different, at least for a transient period, when adaptation to light irradiance was allowed to proceed from a low photosynthetic activity after preirradiation of the cells with prolonged red light. The effect of low white light irradiances was pronounced, causing a maximum increase of photosynthetic activity within 3 days. The response to blue light was enhanced as well, and a very low photon irradiance added to continuous red light caused a change of the same order as that produced by high irradiances of blue light alone. This elevated action of low intensity white and blue light is most likely due to increased metabolite supply derived from the degradation of starch enhanced by this light quality. Therefore, photosynthetic effectiveness in Acetabularia is regulated by the irradiance of blue light and by feedback via photosynthetic products.  相似文献   

8.
The diblock copolymers of polystyrene and poly(tert‐butyl acrylate) (PSt‐b‐PtBA) with various molecular weights and hydrophobic/hydrophilic (styrene/acrylic acid) chain length were prepared by atom transfer radical polymerization (ATRP). Selective hydrolysis of the diblock copolymers (PSt‐b‐PtBA) resulted in amphiphilic block copolymers of polystyrene and poly(acrylic acid) (PSt‐b‐PAA). The amphiphilic block copolymers of PSt‐b‐PAA with average molecular weight (Mn) <7500 were proved to be critical in dispersing the pigments of UV curable ink‐jet inks for manufacturing the color filter. Incorporating DB2 diblock copolymer dispersants with styrene/acrylic acid ratio at 1.5 allowed more UV curable compositions in the red and blue inks without deteriorating pigment dispersing stability and jetting properties of the ink‐jet inks. The ink drops can be precisely ejected into the tiny color area. Better properties of the cured red stripe such as nanoindentation hardness and chemical resistance were found. The competing absorption of UV light by the blue pigment hindered the through cure of monomers near the interface between glass substrate and the blue stripe. This leads to lower hardness and poor chemical resistance of the UV cured blue stripe. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3337–3353, 2005  相似文献   

9.
A chiral and thermally irreversible photochromic fulgide derivative incorporating an (R)-binaphthol unit in its acid anhydride moiety was used for the photoswitching of the pitch length of cholesteric liquid crystals. Since the absorption maximum wavelengths of both thermally stable photoisomers are nearly in the UV region (quasi-stealth photochromism), it can be exposed to visible light without inducing photochromic reactions. Therefore, when the photoswitching molecule is added to a permanent cholesteric liquid crystal whose reflection light wavelength is in the visible region, the UV light-induced photochromic reaction of the photoswitching molecule changes the wavelength of the reflection light in the visible light region. We have succeeded in regulating the color of cholesteric liquid crystalline cells between red and blue upon UV light irradiation. Attempts to introduce this system in polymer dispersed cholesteric liquid crystals are also described.  相似文献   

10.
Abstract— The photodynamically active dyes methylene blue, toluidine blue, and neutral red act as artificial photoreceptors in light-dependent carotenoid synthesis in Fusarium aquaeductuum. Normally, carotenoid production is only induced by light of wavelengths shorter than 520 nm, but when mycelia are incubated with neutral red, methylene blue, and toluidine blue, red light is also effective in inducing carotenogenesis. Experiments with methylene blue and red light showed that pigments induced under these conditions are qualitatively the same as those induced with white light, and also that, in accord with the results found for photoinduction with white light, the amount of pigment synthesized was proportional to the logarithm of illumination time. In addition to their role in photoinduction, the dyes were also shown to interfere with the biosynthesis of carotenoids, whereas addition after irradiation caused an increase in pigment production that involves a quantitative change in the more unsaturated components.  相似文献   

11.
Abstract— Face-to-profile chloroplast movement in Mougeotia was induced by sequences of strong blue and red short irradiations. This type of response occured only when blue light was applied prior to or simultaneously with red light, and far-red irradiation was necessary after the sequence to cancel the remaining gradient of the far-red absorbing form of phytochrome Pfr. The dependence of the response magnitude on blue and red light sequences was studied for a wide range of light durations and dark intervals. The relationship between the response and the dark interval points to the lack of direct coupling between phytochrome and blue-absorbing “cryptochrome”. It was postulated that a photoproduct having a life-time of2–3 min is formed by the blue-light-mediated reaction. This photoproduct interacts with phytochrome during its transformation or with its final Pfr form.  相似文献   

12.
Light-induced movement responses of the heterotrichous ciliate Blepharisma japonicum were studied by physiological experiments. Two photosensory responses could be identified. A step-up photophobic response is observed as a very rapid backward movement. Microbeam irradiations of individual cells showed that only the anterior part of the ciliate is able to perceive the light stimulus that mediates the phobic reaction. The action spectrum peaks at approximately 400 nm, which indicates that a blue light receptor is involved.
Positive photokinesis of Blepharisma could be shown as a forward movement that is accelerated by increasing the applied photon fluence rate. The steady state level of the velocity depends highly on wavelength and photon fluence rate of the actinic light. After specific inhibition of the phobic reaction bv 1 m/W NH4+, photokinesis can be induced by microbeam irradiation at any part of the cell.
We isolated two main pigments by thin layer chromatography and characterized them as hypericin-like compounds: a red pigment that is obviously responsible for the red color of the ciliates (= blepharismin). and a yellow one with maximal absorption near 420 nm. The possible photoreceptor functions of these pigments are discussed.
We could not find in Blepharisma a distinct phototactic behavior which is so typical for the related ciliate Stentor.  相似文献   

13.
Abstract. The action spectra were determined by measuring photosynthetic H14CO-3-fixation and 14C-glycolate excretion to the medium during 15 min exposure to light at 15 different wavelengths in the visible region using interference filters and a 2500 W high pressure Xe lamp at a constant photon flux of about 1.51 × 1019 quanta m-2.s-1 at all wavelengths.
When plotted on relative scales the action spectrum of glycolate excretion lies below that of photosynthesis at all wavelengths shorter than 517 nm. As glycolate excretion had an exponential relationship to photosynthetic rates, different methods were used to analyze for a specific blue light effect which demonstrated that the relative amount of glycolate excretion was depressed by blue light compared with that by green and red. The greatest difference was observed around 460–480 nm. However, on statistical grounds it is not permitted to draw a difference spectrum which might indicate the absorption characteristics of pigment(s) involved.
A hypothesis is discussed assuming that some glycolate is consumed in an oxidation process for supply of electrons to Photosystem I when Photosystem II is poorly excited in the blue region of the spectrum, which was the case for Anacystis used in the present investigation.  相似文献   

14.
Abstract— The fiber-optic properties of etiolated plant tissues can be used to detect and characterize pigment absorption in vivo. Transmission spectra of light guided through several monocot and dicot etiolated tissues show a decreasing red/far red ratio with increasing tissue length. Absorption bands attributable both to vacuolar pigments such as anthocyanins and to chloroplast pigments lead to the conclusion that the guided light passes through both vacuole and cytoplasm. As etiolated tissue becomes green under white light treatment, the red/far red ratio also changes, the nature of the change depending upon the tissue involved. The blue/red ratio also changes both with increasing length of etiolated tissue and during the greening process, with the changes again dependent on the tissue involved. The spectral dependence of the light-guiding phenomenon in dark grown and green plants may have implications for physiological responses mediated by phytochrome.  相似文献   

15.
Abstract— The dichroic oriented fraction of the far-red light absorbing form of phytochrome (Pfr) in the green alga Mougeotia was characterized by action spectroscopy. Microbeam irradiations had to be used for the induction of chloroplast movement in Pfr-containing cells, because of the special dichroic absorption characteristics of the red light absorbing form of phytochrome (Pr) and Pfr in the alga. Fluence-response curves were elaborated especially in the far-red spectral region by reverting Pfr to Pr at the flanks of the cells and thus generating Pfr-gradients. Linearly polarized light vibrating perpendicularly to the cell axis was used, thus corresponding to the S,-transition moments of Pfr at the flanks of the cells. The action spectrum is characterized by a peak at approximately 715 nm and a very pronounced decrease towards 728 and 734 nm. The data indicate that the spectral absorption of the active Pfr-fraction in green Mougeotia is shifted towards shorter wavelengths as compared to extracted phytochrome from etiolated or even green higher plants. This "blue shift" seems to be typical for Pfr from green lower plants.  相似文献   

16.
A simplified procedure was developed to purify the photoactive yellow protein (PYP) from Ecrorhiorhodospira halophila. Specific antibodies were used to follow the distribution of PYP through the separate purification steps. Low temperature absorbance and fluorescence characteristics of this photoactive protein were investigated. The absorbance spectrum of PYP in 67% (vol/vol) glycerol peaked at 449 and 447 nm, at room-and liquid nitrogen temperatures, respectively. It sharpened significantly upon cooling to 77 K and displayed fine-structure on the blue side of its absorbance maximum, with a spacing of 25 nm. At room temperature PYP fluoresced with a quantum yield of approximately 3.5 times 10?-3 an emission maximum of 495 nm. Maximal excitation occurred at 457 nm, 10 nm red-shifted with respect to the absorbance maximum. At -low temperature the excitation maximum remained unaltered but maximal emission shifted significantly to the blue (to 482 nm). The quantum yield of fluorescence increased to 0.07 at this temperature. Illumination of PYP at low temperature with light from the visible part of the spectrum of electromagnetic radiation induced pronounced changes in its absorbance and fluorescence characteristics. At least two new stable intermediates were formed: one highly fluorescent, with an excitation maximum at 430 nm; additionally, a non-fluorescent red-shifted intermediate with an absorbance maximum at 490 nm. The amount formed of these two intermediates depended strongly on the wavelength of actinic illumination. In combination, these data underline the spectroscopic similarities between PYP and the retinal-containing chromoproteins that are present in Halobacterium halobium.  相似文献   

17.
Blepharismins are photodynamic hypericin-like dianthrones produced as a variable pigment blend in Blepharisma ciliates and mostly studied in the Afro-Asiatic Blepharisma japonicum. The present work describes the bioactivity of pigments from the Brazilian Blepharisma sinuosum. Comparative analyses showed that the pigments from both species can trigger photo-induced modifications in phospholipids, but different redox properties and biological activities were assigned for each pigment blend. Stronger activities were detected for B. sinuosum pigments, with the lethal concentration LC50 10 × lower than B. japonicum pigments in light-irradiated tests against Bacillus cereus and less than half for treatments on the human HeLa tumor cells. HPLC showed B. sinuosum producing a simpler pigment blend, mostly with the blepharismin-C (~ 70%) and blepharismin-E (~ 30%) types. Each blepharismin engaged a specific dose–response profile on sensitive cells. The blepharismin-B and blepharismin-C were the most toxic pigments, showing LC50 ~ 2.5–3.0 µm and ~ 100 µm on B. cereus and HeLa cells, respectively, after illumination. Similarity clustering analysis compiling the bioactivity data revealed two groups of blepharismins: the most active, B and C, and the less active, A, D and E. The B. sinuosum pigment blend includes one representative of each clade. Functional and medical implications are discussed.  相似文献   

18.
Abstract— Long-term growth on acetate in darkness of a permanently yellow and a white-in-darkness mutant of Chlamydomonus reinhardtii showed no requirement for light. Room light or moderate intensities of white light severely inhibited the white mutant, but allowed continuous growth of the yellow form. Blue light (460 nm) stops motility and growth, and induces clumping, in the white form at energy levels which only reduce the growth rate of the yellow mutant. Green light (550 nm) had no effect on either strain, while red light (630 nm), at equal energy levels, affected the white mutant only, however, not as severely as blue light. The mechanism of action of blue and red light is unknown. Evidence suggested the inhibition is not due to cell exudates.  相似文献   

19.
Blue visible light damage to retinal pigment epithelial cells occurs through a photooxidative mechanism and the resultant damage is hypothesized to induce or exacerbate age-related macular degeneration. The purpose of the present study was to identify changes in the cell growth and the expression of hepatocyte growth factor (HGF) in cultured human retinal pigment epithelium (RPE) cells as a result of both blue and red light irradiation. HGF is a growth factor and neurotrophic factor that stimulates growth of various ocular cells and promotes the survival of RPE and retinal neurons. Early passages of human RPE cells were exposed to blue light (460 nm) and red light (640 nm). Nonirradiated cells were used as controls. After 24 and 48 h, conditioned medium was collected and the amount of HGF was measured by ELISA. Cells were detached from the well and counted. Cell viability was evaluated by trypan-blue exclusion study. Blue light at dosage of 63 J/cm(2) significantly inhibited the growth of RPE cells without affecting of cell viability. Amounts of HGF in the culture medium were significantly inhibited by blue-light irradiation at the dosage from 32 to 63 J/cm(2). Red light at a dose of 174 J/cm(2) causes a nonsignificant inhibition of growth of RPE cells and a slight decrease of secretion of HGF. As HGF promotes survival of RPE cells and retinal neurons, the inhibition of production of HGF by visible light, especially by blue light, may enhance the phototoxic effects of visible light on the RPE and retinal neurons.  相似文献   

20.
REGULATION OF CHLOROPLAST DEVELOPMENT BY RED AND BLUE LIGHT   总被引:3,自引:0,他引:3  
There are specific differences between red and blue light greening of etiolated seedlings of Hordevm vulgare L. Blue light results in a different prenyl lipid composition of chloroplast as compared to red light of equal quanta density. This is documented by a much higher prenylquinone content, higher chlorophyll a/b ratios, and lower values for the ratio xanthophylls to carotenes (x/c). The photosynthetic activity of “blue light” chloroplasts (Hill reaction) is higher than that of “red light” chloroplasts. These differences in prenylquinone composition and Hill-activity are associated with a different ultrastructure of chloroplasts. “Red light” chloroplasts exhibit a much higher grana content than “blue light” chloroplasts. The difference in thylakoid composition, photosynthetic activity and chloroplast structure found between blue and red light greening are similar to those found between sun and shade leaves and those between plants grown under high and low light intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号