首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intramolecular 1,2‐boryl‐anion migration from boron to carbon has been achieved by selective activation of the π system in [(vinyl)B2Pin2)]? using “soft” BR3 electrophiles (BR3=BPh3 or 9‐aryl‐BBN). The soft character is key to ensure 1,2‐migration proceeds instead of oxygen coordination/B?O activation. The BR3‐induced 1,2‐boryl‐anion migration represents a triple borylation of a vinyl Grignard reagent using only B2Pin2 and BR3 and forms differentially protected 1,1,2‐triborylated alkanes. Notably, by increasing the steric bulk at the β position of the vinyl Grignard reagent used to activate B2Pin2, 1,2‐boryl‐anion migration can be suppressed in favor of intermolecular {BPin}? transfer to BPh3, thus enabling simple access to unsymmetrical sp2?sp3 diboranes.  相似文献   

2.
N,N‐Dimethylchlorosulfitemethaniminium chloride (SOCl2‐DMF) has been found to be an efficient reagent for the one‐pot synthesis of benzimidazoles and benzoxazoles in excellent yield by condensation of carboxylic acids with o‐phenylenediamine/2‐amino‐phenol.  相似文献   

3.
Benzyl(triphenyl)phosphonium dichloroiodate (BTPPICl2), BnPh3P+(ICl2)?, is easily synthesized in a nearly quantitative yield by the addition of BnPh3P+Cl? to a CH2Cl2 solution of iodine monochloride (ICl). BnPh3P+Cl? can be prepared by the reaction of Ph3P and BnCl. The compound was characterized by physicochemical and spectroscopic methods (elemental analysis, FT‐IR, and 1H‐NMR). The use of phosphonium counterion improves the quality of the BTPPICl2 crystals. BTPPICl2 crystallizes in the monoclinic system, and its crystal and molecular structure has been determined at 100(1) K by X‐ray diffraction. The structure was solved by the direct method and had refined R value of 0.0637 for 699 reflections (I>2σ(I)), space group P21/n with a=12.4700(3), b=13.2196(3), c=14.4580(3) Å, β=102.6340(10)°, V=2325.67(9) Å3, and Z=4. The I‐atom is coordinated by two Cl‐atoms as ligands in a linear geometry. This compound is a versatile reagent for the efficient and selective iodination of organic substrates, in particular of aromatic phenols to the corresponding iodo compounds, under mild conditions. To assess the generality of method, a wide variety of phenols with electron‐donating and electron‐withdrawing substituents were studied. BTPPICl2 is a mild iodination reagent, which offers a new avenue for an expeditious iodination of phenols. The inexpensive, relatively non‐toxic reagent, and mild conditions are the positive features of the procedure and reagent.  相似文献   

4.
Anupama Parmar 《合成通讯》2013,43(14):2301-2308
Adsorption of Fe(ClO4)3(H2O)6 onto chromatographic‐grade silica gel in the presence of organic solvents (S=water, acetonitrile, or lower fatty acids) produces a supported reagent, Fe(ClO4)3(S)6/SiO2. This reagent has been found to be effective for the rapid organic functional group transformations such as dimerization of alkynes, aromatic hydrocarbons, selective oxidation of thiols to disulfides, and transannular reactions in 1,5‐cyclooctadienes on grinding using pestle and mortar in the solid state.  相似文献   

5.
A mild and efficient method has been developed for the selective deprotection of 1,1‐diacetates of aldehydes in excellent yields by means of the P2O5/SiO2 reagent. Advantages of this method are the use of inexpensive and selective reagent, with high yields in simple operation, and short reaction time under solvent‐free conditions.  相似文献   

6.
The aminoazanium of DABCO (H2N‐DABCO) has been developed as a general and practical amination reagent for the direct amination of alkyl and aryl pinacol boronates. This compound is stable and practical for use as a reagent. Various primary, secondary. and tertiary alkyl?Bpin and aryl?Bpin substrates were aminated to give the corresponding amine derivatives. The amination is stereospecific. The anti‐Markovnikov hydroamination of olefins was easily achieved by catalytic hydroboration with HBpin and in subsequent situ amination using H2N‐DABCO. Moreover, the combination of 1,2‐diboration of olefins, using B2pin2, with this amination process achieved the unprecedented 1,2‐diamination of olefins. The amination protocol was also successfully extended to aryl pinacol boronates.  相似文献   

7.
Silica‐supported AgNO3 (AgNO3–SiO2) catalyzes the dearomatizing spirocyclization of alkyne‐tethered aromatics far more effectively than the analogous unsupported reagent; in many cases, reactions which fail using unsupported AgNO3 proceed effectively with AgNO3–SiO2. Mechanistic studies indicate that this is a consequence of silver nanoparticle formation on the silica surface combined with a synergistic effect caused by the silica support itself. The remarkable ease with which the reagent can be prepared and used is likely to be of much synthetic importance, in particular, by making nanoparticle catalysis more accessible to non‐specialists.  相似文献   

8.
Selective reduction of one of the nitro group present in dinitro aromatic compounds by a novel Zinin reagent, H2S‐laden N‐methyldiethanolamine (MDEA) solution, has been explored in the presence of tetra‐n‐butyl phosphonium bromide as a phase transfer catalyst under the liquid–liquid mode of reaction. Under the room temperature reaction condition, reduction of 2,4‐dinitrotoluene (2,4‐DNT) with H2S‐laden MDEA leads to the selective reduction of one nitro group present either at the fourth position to obtain 4‐amino‐2‐nitrotoluene (4A2NT) or at the second position to get 2‐amino‐4‐nitrotoluene (2A4NT). The reaction was very fast to achieve 100% conversion, and the selectivity of 4A2NT is much higher than the 2A4NT. A detailed parametric study was performed to analyze the effect of parameters on 2,4‐DNT conversion and selectivity of both the isomers. The apparent activation energy was found to be as high as 46.25 kJ/mol, and the reaction was found to be kinetically controlled. An empirical kinetic model has been developed to correlate with the conversion version time data obtained experimentally. The present system dealt with an industrial problem in dealing with H2S, present in by‐product gaseous streams of many petroleum and natural gas industries. Novelties in the selective monoreduction lie in that fact that the reaction was done at room temperature (303 K), with a novel reagent, H2S‐laden MDEA solution. Therefore waste‐minimization was effected to yield value‐added fine chemicals, that is, amines.  相似文献   

9.
The radical trifluoromethylation of thiophenol in condensed phase applying reagent 1 (3,3‐dimethyl‐1‐(trifluoromethyl)‐1λ3,2‐benziodoxol) has been examined by both theoretical and experimental methodologies. On the basis of ab initio molecular dynamics and metadynamics we show that radical reaction mechanisms favourably compete with polar ones involving the S‐centred nucleophile thiophenol, their free energies of activation, ΔF, lying between 9 and 15 kcal mol?1. We further show that the origin of the proton activating the reagent is important. Hammett plot analysis reveals intramolecular protonation of 1 , thus generating negative charge on the sulfur atom in the rate‐determining step. The formation of a CF3 radical can be thermally induced by internal dissociative electron transfer, its activation energy, ΔF, amounting to as little as 10.8 and 2.8 kcal mol?1 for reagent 1 and its protonated form 2 , respectively. The reduction of the iodine atom by thiophenol occurs either subsequently or in a concerted fashion.  相似文献   

10.
The synthesis of two well‐defined 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide‐terminated poly(2‐methyl‐2‐oxazoline) with narrow dispersity (Mw/Mn = 1.1) has been achieved for the first time. The insertion of the alkoxyamine end groups at one or both ends of poly(2‐methyl‐2‐oxazoline) (PMEOX) chains has been successfully done using a method based on “terminating reagent method.” These macroinitiators have molecular weights ranging from 6.3 × 103 to 9.4 × 103 g mol?1. In contrast, attempt to introduce the alkoxyamine group at one end of PMEOX chain through the “initiator method” has furnished a mixture of alkoxyamine‐graft polyoxazolines because of rearrangement of alkoxyamine occurring during the synthesis of PMEOX. The macroinitiators obtained by terminating reagent method have been used successfully for polymerization of styrene by nitroxide‐mediated radical polymerization (NMP), which exhibited all the expected features of a controlled system. The control of NMP has been proved by a good agreement between theoretical and experimental molecular weights and by narrow dispersity (Mw/Mn < 1.2). Different types of well‐defined multiblock copolymers have been prepared: diblock copolymers poly[(2‐methyl‐2‐oxazoline)‐b‐(styrene)] (PMEOX‐b‐PS) and, for the first time, triblock copolymers poly[(styrene)‐b‐(2‐methyl‐2‐oxazoline)‐b‐(styrene)] (PS‐b‐PMEOX‐b‐PS). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
《Electroanalysis》2005,17(24):2201-2207
The possibilities of stripping chronopotentiometry (SCP) for heavy metal speciation have been tested in the modality of chemical oxidation using the model systems Cd(II)‐polyacrylic acid (PMA), Cd(II)‐EDTA and Cd(II)‐PMA‐EDTA. The use of 0.03% H2O2 as a chemical oxidant provides reliable results from transition times, but peak potentials are dramatically affected by the presence of this reagent. The study suggests that chemical‐oxidation SCP can be a technique complementary to other stripping modalities in the study of inert and macromolecular labile metal complexes.  相似文献   

12.
This study aims to perform the chelation of difluoroboron (BF2) to quinacridonequinone (QQ). The resulting dark green solid was determined to be QA‐BF2, which is a BF2 complex of 6,13‐dihydroxyquinacridone (QA‐OH), and not QQ‐BF2, which is a BF2 complex of QQ. This result indicated that QQ‐BF2 was first generated as an O,O‐bidentate chelate, which immediately underwent a two‐electron reduction to produce QA‐BF2. This compound was converted to air‐sensitive QA‐OH by undergoing hydrolysis in argon. Since QA‐OH has a strong electron‐donating property, it easily produced QQ via air oxidation in the solution. QA‐OH also acts as a reducing reagent for quinones. The crystal packing of QA‐OH is a herringbone type with short π???π contacts, and a good hole mobility has been suggested by theoretical calculations. Herein, a new synthetic method from QQ to QA‐OH using BF2 chelation and hydrolysis was proposed. QA‐BF2 and QA‐OH are useful organic functional pigments and reducing reagents.  相似文献   

13.
Four novel Au‐ and Ag‐loaded MnO2 nanostructures supported on nitrogen‐doped pyroprotein of natural silk (Au–MnO2@PPNS and Ag–MnO2@PPNS) and nitrogen–sulfur‐doped pyroprotein of natural wool (Au–MnO2@PPNW and Ag–MnO2@PPNW) have been synthesized. Nitrogen‐ and nitrogen–sulfur‐doped pyroproteins were prepared by carbonization of natural silk and wool proteins, respectively. The catalysts were investigated for the aerobic oxidation of aromatic hydrocarbons of petroleum naphtha and the aerobic oxidative synthesis of 2‐phenylbenzo[d ]thiazoles, 2‐phenyl‐1H ‐benzo[d ]imidazoles and 2‐phenyl‐4‐quinazolinones in the absence of any co‐promoter and additional oxidizing reagent. The prepared catalytic systems showed higher catalytic activity in comparison to aggregated catalysts.  相似文献   

14.
Qiqiang Xie  Jinbo Hu 《中国化学》2020,38(2):202-212
Methyl fluorosulfonyldifluoroacetate(FSO2CF2CO2Me or MFSDA),often called"Chen's reagent",is commonly used to synthesize trifluoromethylated and difluoroalkylated compounds.This important reagent was initially developed as an efficient trifluoromethylating agent by Professor Qing-Yun Chen and co-workers at Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences in 1989.  相似文献   

15.
New complexes of arylplatinum(II) and arylplatinum(IV) containing a bridging ligand, 4,4′‐bipyridine, were synthesized by the reaction of starting material of platinum(II) including para‐tolyl groups,[(p‐MeC6H4)2Pt(SMe2)2], with the 4,4′‐bipyridine ligand in 1:1 molar stoichiometry. In the synthesized complexes, the ligand was bonded to the platinum center through the nitrogen donor atoms. To investigate the kinetic reaction of the platinum(II) complex with iodomethane (CH3‐I) as a reagent, the oxidative addition reaction of this reagent with Pt(II) was performed in dichloromethane and a Pt(IV) complex with the octahedral geometry was formed. The synthesized complexes have been characterized by different spectroscopic methods such as FT‐IR, 1H NMR, UV–vis, and elemental analysis. Moreover, the conductivity measurements showed nonelectrolyte characteristics for these complexes. The obtained data showed that the complexes have 1:1 metal‐to‐ligand molar ratio. Also, the oxidative addition reaction of CH3I with the arylplatinum(II) complex at different temperatures was used for obtaining kinetic parameters such as rate constants, activation energy, entropy, and enthalpy of activation using the Microsoft Excel solver. From the acquired data, an SN2 mechanism was suggested for the oxidative addition reaction.  相似文献   

16.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

17.
A new shelf‐stable and easily scalable difluoromethylthiolating reagent S‐(difluoromethyl) benzenesulfonothioate (PhSO2SCF2H) was developed. PhSO2SCF2H is a powerful reagent for radical difluoromethylthiolation of aryl and alkyl boronic acids, decarboxylative difluoromethylthiolation of aliphatic acids, and a phenylsulfonyl‐difluoromethylthio difunctionalization of alkenes under mild reaction conditions.  相似文献   

18.
A series of Pd(II)‐enaminone complexes, termed Pd(eao)2, have been synthesized and characterized. The investigation on the catalytic activities of these new Pd(II)‐reagents has proved that the Pd(eao)2‐ 1 possesses excellent catalytic activity for the Suzuki‐ Miyaura cross coupling reactions of aryl bromides/chlorides with aryl/vinyl boronic acids in the environmentally benign media of aqueous PEG400 at low loading (5 mol‰). The superiority of this Pd(II)‐reagent to those commercial Pd(II) and Pd(0) catalysts in catalyzing the reactions has been confirmed by parallel experiments. What's more, Pd(eao)2‐ 2 has been found as a practical catalyst for the homo‐coupling reactions of aryl boronic acids.  相似文献   

19.
A combination of experiment and theory has been used to explore the mechanisms by which molecular iodine (I2) and iodonium ions (I+) activate alkynes towards iodocyclization. Also included in the analysis are the roles of atomic iodine (I . ) and iodide ion (I?) in mediating the competing addition of I2 to the alkyne. These studies show that I2 forms a bridged I2–alkyne complex, in which both alkyne carbons are activated towards nucleophilic attack, even for quite polarized alkynes. By contrast, I+ gives unsymmetrical, open iodovinyl cations, in which only one carbon is activated toward nucleophilic attack, especially for polarized alkynes. Addition of I2 to alkynes competes with iodocyclization, but is reversible. This fact, together with the capacity of I2 to activate both alkyne carbons towards nucleophilic attack, makes I2 the reagent of choice (superior to iodonium reagents) for iodocyclizations of resistant substrates. The differences in the nature of the activated intermediate formed with I2 versus I+ can also be exploited to accomplish reagent‐controlled 5‐exo/6‐endo‐divergent iodocyclizations.  相似文献   

20.
A mild and efficient synthesis of 2‐arylindazole derivatives via the reductive cyclization of nitro‐aryl substrates mediated by a low‐valent titanium reagent (TiCl4/Sm/Et3N) has been developed. The attractive features of the current method include an N–N bond formation and the selective reduction of the C = N bond and nitro group, both of which were easily achieved in one‐pot by controlling the pH of the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号