首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We report the synthesis and physical properties of novel fullerene–oligoporphyrin dyads. In these systems, the C‐spheres are singly linked to the terminal tetrapyrrolic macrocycles of rod‐like meso,meso‐linked or triply‐linked oligoporphyrin arrays. Monofullerene–mono(ZnII porphyrin) conjugate 3 was synthesized to establish a general protocol for the preparation of the target molecules (Scheme 1). The synthesis of the meso,meso‐linked oligopophyrin–bisfullerene conjugates 4 – 6 , extending in size up to 4.1 nm ( 6 ), was accomplished by functionalization (iodination followed by Suzuki cross‐coupling) of the two free meso‐positions in oligomers 21 – 23 (Schemes 2 and 3). The attractive interactions between a fullerene and a ZnII porphyrin chromophore in these dyads was quantified as ΔG=−3.3 kcal mol−1 by variable‐temperature (VT) 1H‐NMR spectroscopy (Table 1). As a result of this interaction, the C‐spheres adopt a close tangential orientation relative to the plane of the adjacent porphyrin nucleus, as was unambiguously established by 1H‐ and 13C‐NMR (Figs. 9 and 10), and UV/VIS spectroscopy (Figs. 13–15). The synthesis of triply‐linked diporphyrin–bis[60]fullerene conjugate 8 was accomplished by Bingel cyclopropanation of bis‐malonate 45 with two C60 molecules (Scheme 5). Contrary to the meso,meso‐linked systems 4 – 6 , only a weak chromophoric interaction was observed for 8 by UV/VIS spectroscopy (Fig. 16 and Table 2), and the 1H‐NMR spectra did not provide any evidence for distinct orientational preferences of the C‐spheres. Comprehensive steady‐state and time‐resolved UV/VIS absorption and emission studies demonstrated that the photophysical properties of 8 differ completely from those of 4 – 6 and the many other known porphyrin–fullerene dyads: photoexcitation of the methano[60]fullerene moieties results in quantitative sensitization of the lowest singlet level of the porphyrin tape, which is low‐lying and very short lived. The meso,meso‐linked oligoporphyrins exhibit 1O2 sensitization capability, whereas the triply‐fused systems are unable to sensitize the formation of 1O2 because of the low energy content of their lowest excited states (Fig. 18). Electrochemical investigations (Table 3, and Figs. 19 and 20) revealed that all oligoporphyrin arrays, with or without appended methano[60]fullerene moieties, have an exceptional multicharge storage capacity due to the large number of electrons that can be reversibly exchanged. Some of the ZnII porphyrins prepared in this study form infinite, one‐dimensional supramolecular networks in the solid state, in which the macrocycles interact with each other either through H‐bonding or metal ion coordination (Figs. 6 and 7).  相似文献   

2.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

3.
Facile synthesis of meso‐aryl‐substituted 5,15‐dithiaporphyrins and 10‐thiacorroles has been achieved by sulfidation of α,α′‐dichlorodipyrrin metal complexes with sodium sulfide in DMF. Thiacorrole metal complexes exhibit distinct aromaticity due to 18 π‐conjugation including the lone pair on sulfur, whereas dithiaporphyrins are nonaromatic judging from 1H NMR spectra, X‐ray analysis, and absorption spectra. We have found that NiII and AlIII dithiaporphyrin complexes undergo smooth thermal sulfur extrusion reaction to give the corresponding thiacorrole complexes, whereas free base, ZnII, PdII, and PtII dithiaporphyrin complexes did not exhibit the similar reactivity. The DFT calculations have elucidated a reaction pathway involving an episulfide intermediate, which can explain the markedly different reactivity among dithiaporphyrin metal complexes.  相似文献   

4.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

5.
Our synthetic attempts for the preparation oligo‐ and polyporphyrin arrays were reviewed in comparison with recent accomplishment in the related field. Especially, the synthesis and structural characteristics of huge monodisperse meso‐meso linked porphyrin arrays with multidimensional architectures were focused. The AgI‐promoted meso‐meso coupling reaction of 5,15‐diaryl and 5,10,15‐triaryl ZnII‐porphyrins is advantageous in light of its high regioselectivity, as well as its easy extension to large porphyrin arrays. When applied to 1,4‐phenylene‐bridged linear porphyrin substrates, the coupling reaction gave three‐dimensionally arranged windmill‐shaped and grid‐shaped porphyrin arrays. The meso‐meso coupling doubling reaction was repeated up to the synthesis of a discrete 128‐mer. During these attempts, many porphyrin arrays were isolated in a discrete form by repetitive gel‐permeation chromatography and, interestingly, all the arrays exhibited high solubility in common organic solvents in spite of their giant molecular size. Furthermore, the AgI‐promoted coupling reaction was extended to the preparation of long polyporphyrinylenes under slightly modified conditions by either adding N,N‐dimethylacetamide (DMA) or heating slightly.  相似文献   

6.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

7.
Hybrid porphyrin tapes 3 and 4 , consisting of a mixture of 3,5‐di‐tert‐butylphenyl‐substituted donor‐type ZnII–porphyrins and pentafluorophenyl‐substituted acceptor‐type ZnII–porphyrins, were prepared by a synthetic route involving cross‐condensation reaction of a NiII–porphyrinyldipyrromethane and pentafluorophenyldipyrromethane with pentafluorobenzaldehyde followed by appropriate demetalation, remetalation, and oxidative ring‐closure reaction. The NiII‐substituted porphyrin tapes 5 (Ni‐Zn‐Ni) and 6 (Ni‐H2‐Ni) were also prepared through similar routes. The hybrid porphyrin tapes 3 and 4 are more soluble and more stable than normal porphyrin tapes 1 and 2 consisting of only donor‐type ZnII–porphyrins. The solid‐state and crystal packing structures of 3 , 4 , and 5 were elucidated by single‐crystal X‐ray diffraction analysis. Singly mesomeso‐linked hybrid porphyrin arrays 12 and 14 exhibit redox potentials that roughly correspond to each constituent porphyrin segments, while the redox potentials of the hybrid porphyrin tapes 3 and 4 are positively shifted as a whole. The two‐photon absorption (TPA) values of 1–6 were measured by using a wavelength‐scanning open aperture Z‐scan method and found to be 1900, 21 000, 2200, 27 000, 24 000, and 26 000 GM, respectively. These results illustrate an important effect of elongation of π‐electron conjugation for the enhancement of TPA values. The hybrid porphyrin tapes show slightly larger TPA values than the parent ones.  相似文献   

8.
We report the regiocontrolled syntheses of ethene‐bridged para‐phenylene oligomers in three distinct classes by using PtII‐ and RuII‐catalyzed aromatization. This synthetic approach has been developed based on twofold aromatization of the 1‐aryl‐2‐alkynylbenzene functionality, which proceeds by distinct regioselectivity for platinum and ruthenium catalysts. Variable‐temperature NMR spectra provide evidence that large arrays of these oligomers are prone to twist from planarity. The UV/Vis and photoluminescence (PL) spectra as well as the band gaps of these regularly growing arrays show a pattern of extensive π conjugation with increasing array sizes, except for in one instance.  相似文献   

9.
A series of RuII heterodinuclear complexes of ABA ‐type with electron‐deficient bis‐terpyridines as building blocks was synthesized by (R‐tpy)RuIIICl3 complexation. These compounds were characterized by NMR spectroscopy, MALDI‐TOF, ESI‐TOF mass spectrometry, and elemental analysis. The results were compared with a coil‐rod‐coil RuII metallo‐supramolecular copolymer, which was synthesized by bis‐complex formation between a hydrophilic ω‐terpyridine poly(ethylene glycol) RuII mono‐complex and a hydrophobic bis‐terpyridine‐functionalized rigid core. This amphiphilic RuII triblock copolymer showed self‐assembly to clusters and micelles in aqueous solution, which was studied by transmission electron microscopy and dynamic light scattering. Applying velocity sedimentation experiments the number of amphiphilic RuII ABA triblock copolymer molecules within the micelles could be estimated. Finally, the photophysical properties of the RuII supramolecular assemblies were investigated by UV–vis spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A series of directly mesomeso‐linked Pd–porphyrin oligomers (PdDTP‐M, PdDTP‐D, and PdDTP‐T) have been prepared. The absorption region and the light‐harvesting ability of the Pd–porphyrin oligomers are broadened and enhanced by increasing the number of Pd–porphyrin units. Triplet–triplet annihilation upconversion (TTA‐UC) systems were constructed by utilizing the Pd–porphyrin oligomers as the sensitizer and 9,10‐diphenylanthracene (DPA) as the acceptor in deaerated toluene and green‐to‐blue photon upconversion was observed upon excitation with a 532 nm laser. The triplet–triplet annihilation upconversion quantum efficiencies were found to be 6.2 %, 10.5 %, and 1.6 % for the [PdDTP‐M]/DPA, [PdDTP‐D]/DPA, and [PdDTP‐T]/DPA systems, respectively, under an excitation power density of 500 mW cm?2. The photophysical processes of the TTA‐UC systems have been investigated in detail. The higher triplet–triplet annihilation upconversion quantum efficiency observed in the [PdDTP‐D]/DPA system can be rationalized by the enhanced light‐harvesting ability of PdDTP‐D at 532 nm. Under the same experimental conditions, the [PdDTP‐D]/DPA system produces more 3DPA* than the other two TTA‐UC systems, benefiting the triplet–triplet annihilation process. This work provides a useful way to develop efficient TTA‐UC systems with broad spectral response by using Pd–porphyrin oligomers as sensitizers.  相似文献   

11.
The intramolecular oxidation of ROCH3 to ROCH2OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met‐hemoCD3) with cumene hydroperoxide in aqueous solution. Met‐hemoCD3 is composed of meso‐tetrakis(4‐sulfonatophenyl)porphinatoiron(III) (FeIIITPPS) and a per‐O‐methylated β‐cyclodextrin dimer having an ‐OCH2PyCH2O‐ linker (Py=pyridine‐3,5‐diyl). The O=FeIVTPPS complex was formed by the reaction of met‐hemoCD3 with cumene hydroperoxide, and isolated by gel‐filtration chromatography. Although the isolated O=FeIVTPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to FeIITPPS (t1/2=7.6 h). This conversion was accompanied by oxidative O‐demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=FeIVTPPS from ROCH3 yields HO‐FeIIITPPS and ROCH2.. This was followed by radical coupling to afford FeIITPPS and ROCH2OH. The hemiacetal (ROCH2OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two‐electron oxidation.  相似文献   

12.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

13.
Tetrairon(III) single‐molecule magnets [Fe4(pPy)2(dpm)6] ( 1 ) (H3pPy=2‐(hydroxymethyl)‐2‐(pyridin‐4‐yl)propane‐1,3‐diol, Hdpm=dipivaloylmethane) have been deliberately organized into supramolecular chains by reaction with RuIIRuII or RuIIRuIII paddlewheel complexes. The products [Fe4(pPy)2(dpm)6][Ru2(OAc)4](BF4)x with x=0 ( 2 a ) or x=1 ( 2 b ) differ in the electron count on the paramagnetic diruthenium bridges and display hysteresis loops of substantially different shape. Owing to their large easy‐plane anisotropy, the s=1 diruthenium(II,II) units in 2 a act as effective seff=0 spins and lead to negligible intrachain communication. By contrast, the mixed‐valent bridges (s=3/2, seff=1/2) in 2 b introduce a significant exchange bias, with concomitant enhancement of the remnant magnetization. Our results suggest the possibility to use electron transfer to tune intermolecular communication in redox‐responsive arrays of SMMs.  相似文献   

14.
Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2RuII]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1H and 13C NMR) measurements corroborated by DFT calculations indicated that the production of hydrogen occurs by a two-step process. First, decamethylruthenocene hydride [Cp*2RuIV(H)]+ is formed in the presence of an organic acid. Subsequently, [Cp*2RuIV(H)]+ is reversibly reduced in a heterolytic reaction with one-photon excitation leading to a first release of hydrogen. Thereafter, the resultant decamethylruthenocenium ion [Cp*2RuIII]+ is further reduced with a second release of hydrogen by deprotonation of a methyl group of [Cp*2RuIII]+. Experimental and computational data show spontaneous conversion of [Cp*2RuII] to [Cp*2RuIV(H)]+ in the presence of protons. Calculations highlight that the first reduction is endergonic (ΔG0=108 kJ mol−1) and needs an input of energy by light for the reaction to occur. The hydricity of the methyl protons of [Cp*2RuII] was also considered.  相似文献   

15.
Silylation of peripherally lithiated porphyrins with silyl electrophiles has realized the first synthesis of a series of directly silyl‐substituted porphyrins. The meso‐silyl group underwent facile protodesilylation, whereas the β‐silyl group was entirely compatible with standard work‐up and purification on silica gel. The meso‐silyl group caused larger substituent effects to the porphyrin compared with the β‐silyl group. Silylation of β‐lithiated porphyrins with 1,2‐dichlorodisilane furnished β‐to‐β disilane‐bridged porphyrin dimers. A doubly β‐to‐β disilane‐bridged NiII‐porphyrin dimer was also synthesized from a β,β‐dilithiated NiII‐porphyrin and characterized by X‐ray crystallographic analysis to take a steplike structure favorable for interporphyrinic interaction. Denickelation of βsilylporphyrins was achieved upon treatment with a 4‐tolylmagnesium bromide to yield the corresponding freebase porphyrins.  相似文献   

16.
RuII–bis‐pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16 000 M ?1 cm?1). Thus, RuII–polyimine complexes that show intense visible‐light absorptions are of great interest. However, no effective light‐harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible‐light‐harvesting RuII–coumarin arrays, which absorb at 475 nm (ε up to 63 300 M ?1 cm?1, 4‐fold higher than typical RuII–polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy‐transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady‐state and time‐resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuII–polypyridine–chromophore light‐harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal‐to‐ligand charge‐transfer (M LCT) states. Lower energy levels of 1IL/3IL than the corresponding 1M LCT/3M LCT states frustrate the cascade energy‐transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light‐harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10‐diphenylanthracene as a triplet‐acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %.  相似文献   

17.
Azobenzene‐bridged β‐to‐β and meso‐to‐meso porphyrin nanorings were successfully synthesized by a palladium‐catalyzed Suzuki–Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di‐ and tetramers are in the alltrans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the alltrans configurations: the pure alltrans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump‐power‐dependent decay results revealed excitation energy transfer for azobenzene‐bridged zinc–porphyrin nanorings. The distances between porphyrin units of these azobenzene‐bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso‐to‐meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)–porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di‐ and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.  相似文献   

18.
RuII?PtII complexes are a class of bioactive molecules of interest as anticancer agents that combine a light‐absorbing chromophore with a cisplatin‐like unit. The results of a DFT and TDDFT investigation of a RuII complex and its conjugate with a cis‐PtCl2 moiety reveal that a synergistic effect of the metals makes the assembly a promising multitarget anticancer drug. Inspection of type I and type II photoreactions and spin–orbit coupling computations reveals that the cis‐PtCl2 moiety improves the photophysical properties of the RuII chromophore, ensuring efficient singlet oxygen generation and making the assembly suitable for photodynamic therapy. At the same time, the RuII chromophore promotes a new alternative activation mechanism of the PtII ligand via a triplet metal‐to‐ligand charge transfer (3M LCT) state, before reaching the biological target. The importance of the supramolecular architecture is accurately derived, opening interesting new perspectives on the use of bimetallic RuII?PtII assemblies in a combined anticancer approach.  相似文献   

19.
The AgI-promoted oxidative meso-meso coupling reaction of 5,15-diaryl ZnII-porphyrins is advantageous in light of its high regioselectivity as well as its easy extension to large porphyrin arrays. Linear meso-meso linked porphyrin 128-mer and three-dimensionally arranged grid porphyrin 48-mer were isolated in a discrete form by repetitive oxidation reaction and subsequent gel-permeation chromatography (GPC)-HPLC. 5,15-Diaryl CuII-, NiII-, and PdII-porphyrins were converted to meso- doubly-linked diporphyrins by oxidation with(p-BrC6H4)3NSbCl6. End-aryl-capped meso-meso linked CuII-, NiII-, and PdII- diporphyrins were converted to completely fused meso-meso - -triply-linked diporphyrins through the oxidative ring closure (ODRC) reaction with (p-BrC6H4)3NSbCl6. Finally, we found that ScIII-catalyzed oxidation with DDQ gave a very efficient ODRC reaction and hence allowed the synthesis of triply-linked oligoporphyrins up to 12-mer.  相似文献   

20.
A new class of substituted porphyrins has been developed in which a different number of cyclometalated PtII C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light‐induced singlet oxygen (1O2) generation studies. All of these ZnII porphyrin–PtII C^N^N acetylide conjugates show moderate to high (ΦΔ=0.55 to 0.63) singlet oxygen generation efficiency. The complexes are soluble in organic solvents but, despite the PEG substituents, slowly aggregate in aqueous solvent systems. These conjugates also exhibit interesting photophysical properties, including near‐complete photoinduced energy transfer (PEnT) through the rigid acetylenic bond(s) from the PtII C^N^N antenna units to the ZnII porphyrin core, which shows sensitized luminescence, as shown by quenching of PtII C^N^N‐based luminescence. Electrochemical measurements show a set of redox processes that are approximately the sum of what is observed for the PtII C^N^N acetylide and ZnII porphyrin units. UV/Vis spectroscopic properties are supported by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号