首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new branched-pore adsorption model has been developed using an external mass transfer coefficient, K f, an effective diffusivity, D eff, a lumped micropore diffusion rate parameter, K b, and the fraction of macropores, f, to describe sorption kinetic data from initial adsorbent-adsorbate contact to the long-term adsorption phase. This model has been applied to an environmental pollution problem—the removal of two dyes, Acid Blue 80 (AB80) and Acid Red 114 (AR114), by sorption on activated carbon. A computer program has been used to generate theoretical concentration-time curves and the four mass transfer kinetic parameters adjusted so that the model achieves a close fit to the experimental data. The best fit values of the parameters have been determined for different initial dye concentrations and carbon masses. Since the model is specifically applicable to fixed constant values of these four parameters, a further and key application of this project is to see if single constant values of these parameters can be used to describe all the experimental concentration-time decay curves for one dye-carbon system.The error analysis and best fit approach to modeling the decay curves for both dye systems show that the correlation between experimental and theoretical data is good for the fixed values of the four fitted parameters. A significantly better fit of the model predictions is obtained when K f, K b and f are maintained constant but D eff is varied. This indicates that the surface diffusivity may vary as a function of surface coverage.  相似文献   

2.
Mass transfer coefficient (j D ) between fluid and column wall in liquid packed and fluidized beds of spherical inert particle has been studied experimentally using adsorption method. Experiments were conducted in column 40 mm in diameter for packed and fluidized beds. In all runs mass transfer rates were determined in presence of spherical glass particles 2.06 mm in diameter. This paper introduced adsorption method as very suitable method for studies of mass transfer and for fluid flow visualization. The adsorption method is based on the dynamic adsorption of an organic dye onto a surface covered with a thin layer of a porous adsorbent. Local and average mass transfer coefficients were determinated from the surface color intensity of the foils of silica gel. Correlation j D = f(Re) was derived using mass transfer coefficients data. The article is published in the original.  相似文献   

3.
Adsorption characteristics of the pesticides Deltamethrin were studied in aqueous solutions using acid treated Oil Shale Ash (ATOSA) in a series of batch adsorption experiments. The maximum loading capacity of the adsorbent and the rate of adsorption were found to increase with increasing the pesticide initial concentration, mixing speed and were found to decrease with temperature and particle size. Langmuir as well as Freundlich isotherm models fit the adsorption data with R 2>0.97 in all cases. The maximum adsorption capacity for Deltamethrin was 11.4 mg/g. The two-resistance mass transfer model based on the film resistance and homogeneous solid phase diffusion was used to fit the experimental data. A computer program has been developed to estimate the theoretical concentration-time dependent curves and to compare them with the experimental curves by means of the best-fit approach. The model predicts that the external mass transfer coefficient K was affected by varying the initial pesticide concentration, the agitation speed and temperature whereas the diffusion coefficient D was affected by the initial pesticide concentration, and temperature.  相似文献   

4.
The sorption of acid dyes from aqueous effluents onto activated carbon has been studied. The effects of initial dye concentration and activated carbon mass on the rate of Acid Blue 80, Acid Red 114 and Acid Yellow 117 removal have been investigated. A three-resistance mass transport model based on film, pore and surface diffusion control has been applied to model the concentration decay curves. The model incorporates an effective diffusion coefficient D eff, which is dependant on the equilibrium solid phase concentration or fractional surface coverage. The results of the film-pore-surface diffusion model are compared with the data obtained from the basic film-pore diffusion model. It has been found that the film-pore-surface diffusion model provides a major improvement over the data correlated by the film-pore diffusion model. Also, the relationship between surface diffusion and fractional surface coverage has been investigated for the adsorption of acid dyes on activated carbon.  相似文献   

5.
The sorption of acid dyes from aqueous effluents onto activated carbon has been studied. The effects of initial dye concentration and activated carbon mass on the rate of Acid Blue 80, Acid Red 114 and Acid Yellow 117 removal have been investigated. A three-resistance mass transport model based on film, pore and surface diffusion control has been applied to model the concentration decay curves. The model incorporates an effective diffusion coefficient D eff, which is dependant on the equilibrium solid phase concentration or fractional surface coverage. The results of the film-pore-surface diffusion model are compared with the data obtained from the basic film-pore diffusion model. It has been found that the film-pore-surface diffusion model provides a major improvement over the data correlated by the film-pore diffusion model. Also, the relationship between surface diffusion and fractional surface coverage has been investigated for the adsorption of acid dyes on activated carbon.  相似文献   

6.
The adsorption of dibenzothiophene (DBT) in hexadecane onto NaY zeolite has been studied by performing equilibrium and kinetic adsorption experiments. The influence of several variables such as contact time, initial concentration of DBT and temperature on the adsorption has been investigated. The results show that the isothermal equilibrium can be represented by the Langmuir equation. The maximum adsorption capacity at different temperatures and the corresponding Langmuir constant (K L ) have been deduced. The thermodynamic parameters (ΔG 0H 0S 0) for the adsorption of DBT have also been calculated from the temperature dependence of K L using the van’t Hoff equation. The value of ΔH 0S 0 are found to be −30.3 kJ mol−1 and −33.2 J mol−1 K−1 respectively. The adsorption is spontaneous and exothermic. The kinetics for the adsorption process can be described by either the Langmuir model or a pseudo-second-order model. It is found that the adsorption capacity and the initial rate of adsorption are dependent on contact time, temperature and the initial DBT concentration. The low apparent activation energy (12.4 kJ mol−1) indicates that adsorption has a low potential barrier suggesting a mass transfer controlled process. In addition, the competitive adsorption between DBT, naphthalene and quinoline on NaY was also investigated.  相似文献   

7.
In present study, we have investigated the effect of an anionic surfactant sodium dodecyl sulfate (SDS) and clay on calcium alginate beads was studied to remove methylene blue (MB) and to improve the adsorption capacity. The effects of various experimental parameters, such as shaking rate, initial dye concentration, temperature, and pH on the adsorption rate, have been studied. Equilibrium studies showed that the sorption of the dye was enhanced in presence of SDS. Scanning electron microscope (SEM) analysis showed that SDS entrapped beads have more pores and cavities which could be responsible for improved adsorption of MB. The kinetics of cationic dye adsorption nicely followed pseudo-second-order process. The evaluated thermodynamic parameters (ΔG o, ΔH o, ΔS o) suggest endothermic adsorption of MB. The results revealed that the surfactant entrapped alginate could be considered as potential adsorbents for MB removal from aqueous solutions.  相似文献   

8.
The overall adsorption rate of Reactive Black 5 dye (RB5) on chitosan based materials was elucidated using diffusional models. Fundamental aspects, such as, geometry of the adsorbents and swelling effects were considered. Chitosan based materials (powder and film) were prepared from shrimp wastes and characterized regarding to the fundamental features for adsorption. Experimental decay curves were obtained under different conditions of stirring rate and initial dye concentration. The data were modeled according to the external mass transfer and diffusional models. The kL (external mass transfer coefficient), Dep (effective pore diffusion coefficient) and Ds (surface diffusion coefficient) values were estimated. For both adsorbents, it was found that the surface diffusion was the intraparticle diffusion mechanism governing the adsorption rate of RB5, since its contribution was higher than 92 % regardless the position and time. The Ds values ranged from 2.85 × 10?11 to 5.78 × 10?11 for chitosan powder and from 4.15 × 10?11 to 12.12 × 10?11 cm2 s?1 for chitosan films. The RB5 adsorption was faster when chitosan powder was used, mainly at higher stirring rates and initial dye concentrations. The swelling effect was most pronounced for the chitosan films, where, provided an increase of about 65 times in the Ds value.  相似文献   

9.
This study was undertaken to identify factors exerting the strongest influence on the adsorption of dye. The maximum adsorption capacity (at the adopted operating conditions) was the main parameter used to evaluate the process. In addition, the feasible adsorption capacity of chitosan was evaluated. Breakthrough experiments were carried out in a circulating air-lift reactor at a constant concentration of reactive dye Black 8 (100 mg/dm3). The tests studied different chitosan concentrations in the reactor and a range of flow intensities. The results of the breakthrough tests were compared by means of apparent mass transfer coefficients, determined by slopes at C/C 0=1/2. The adsorption capacity of chitosan was affected to the greatest extent by the flow rate of the medium to the reactor. In turn, the utilization of the maximum adsorption capacity of chitosan, at the assumed efficiency of dye removal, was determined by chitosan concentration in the reactor.  相似文献   

10.
In this study, the removal of a cationic thiazin dye such as Basic Blue 17 (Toluidin Blue, BB 17) by chemically crosslinked acrylamide (AAm)/acrylic acid sodium salt (AASS) hydrogels was investigated. Super water retainer AAm/AASS hydrogels with various compositions were prepared from ternary mixtures of AAm, AASS and water by free radical polymerization in aqueous solution using multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA), N,N′ methylenebisacrylamide (NMBA), 1,4 butanediol dimethacrylate (BDMA) and trimethylolpropane triacrylate (TMPTA). Adsorption of Basic Blue 17 from aqueous solutions was studied by batch sorption technique at 25°C. The effect of Basic Blue 17 concentration and mass of adsorbent on the dye adsorption were examined. In the experiments of the sorption, C type and L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (K i ), equilibrium constant (K), monolayer coverage (n), site-size (u), and maximum fractional occupancy (Ô) for AAm/AASS hydrogel-dye binding system were calculated by using Klotz linearization method. Finally, the amount of sorbed Basic Blue 17 per gram of dry hydrogel (q) was calculated to be 1.96–21.35 μ mol dye per gram for AAm/AASS hydrogels. Adsorption of Basic Blue 17 was changed range 39.17–96.63%. AAm/AASS hydrogels crosslinked by TMPTA, EGDMA, BDMA or NMBA can be used a sorbent in biotechnology, environment, sorption, separation, purification, immobilization and enrichment of some species.  相似文献   

11.
《印度化学会志》2023,100(4):100974
Removal of Methylene Blue (MB) dye using Litchi Leaves Powder (LLP) material was carried out in batch mode. Effect of the mass of the adsorbent (0.1–2.5 g/L), pH of the solution (2−12), starting concentration of MB dye (50–150 mg/L), ionic strength using NaCl (0.1–0.5 M) as an electrolyte, contact time (0–60 min) on the adsorption of MB dye was studied. To calculate pH at which LLP material surface becomes neutral point of zero charge (pHpzc) is also determined and found to be 6.48. Removal process best fit in the pseudo-second-order kinetic model as indicated by its higher R2 value (0.999). Isotherm models (Freundlich and Langmuir) were fitted to the data obtained from the experiment to understand the adsorption behaviour. Result shows that experimental data were fitted to the both isotherm models (Freundlich and Langmuir) as indicated by higher R2 value for both Freundlich (0.991) and Langmuir (0.994) model, and it was determined that LLP has a maximum adsorption capacity of 119.76 mg/g.  相似文献   

12.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

13.
《中国化学会会志》2018,65(2):259-270
Textile and dyeing industries are considered as one of the main water utilizing industries and generate a huge amount of colored liquid effluents in their finishing and dyeing processes. In this paper, agricultural waste corncob has been chosen as a renewable source to produce activated carbon at 400 °C (corncob activated carbon, CCAC) for the removal of Procion Red MX‐5B (PR) and crystal violet (CV) from dye‐polluted effluent using a batch technique. The efficiency of CCAC in adsorbing CV and PR from the water has been carried out as a function of pH, adsorbent dose, contact time, agitation, and initial concentration. The Temkin, Langmuir, and Freundlich isotherm model equations were investigated to understand the adsorption mechanism of dye molecules. The Langmuir isotherm R2 obtained was 0.9958 for CV and 0.9733 for PR. Maximum adsorption capacity obtained was 2.498 mg/g for CV and 2.86 mg/g for PR. Moreover, a pseudo‐second‐order kinetic equation with R2 value of 0.9999 was found in this adsorption process. To identify the chemical and morphological characteristics and surface functional groups, nanocomposite of CCAC was characterized using field emission scanning electron microscopy and Fourier‐transform infrared spectrophotometry. The obtained results indicate that the prepared CCAC can be used as a promising low‐cost dye (CV and PR) removing adsorbent from aqueous solutions.  相似文献   

14.
The rate of dye adsorption from aqueous effluents onto palm kernel shell (PKS) activated carbon has been studied experimentally using the batch adsorption method. The adsorption rates of methylene blue on PKS for systems of different initial dye concentrations are modeled using a film-pore-concentration dependent surface diffusion (FPCDSD) model. The FPCDSD model is sufficiently general and can be reduced easily to describe other simplified models. Using the FPCDSD model, only a single set of mass transfer parameters is required to describe the methylene blue/PKS system for different initial concentrations. A different set of mass transfer parameters are needed to obtain the best fitting if the pore diffusion is not included in the model.  相似文献   

15.
Saraydın  Dursun  Işıkver  Yasemin  Karadağ  Erdener 《Adsorption》2022,28(5-6):249-260

The effects of crosslinker and dye type on swelling and S-type adsorption properties of crosslinked polyhydroxamates (CHP) were investigated. CHPs containing N,N?-methylenebisacrylamide (N), or ethylene glycol dimethacrylate (E) were used in the swelling, diffusion, and adsorption experiments in solutions of oxazine dyes such as Brilliant Cresyl Blue, Nile Blue, and Cresyl Violet. Swelling and diffusion parameters of CHPs in dye solutions (such as equilibrium swelling, half time of swelling, swelling value at half time, network parameter, diffusion exponent, and diffusion constant) were calculated. It is understood from the time of swelling to reach equilibrium that CHPs swell very fast. CHP-E in all dyes solutions swelled considerably more than CHP-N. Dye solution diffusion into CHPs was determined to be of non-Fickian character. It has been observed that the swelling properties of hydrogels are highly influenced by the crosslinker type. The adsorption of oxazine dyes onto CHPs is similar to the S-type adsorption in the Giles classification system. When it was seen that the experimental data fit the Sigmoidal 4 parameter equation with a high correlation (r2?>?0.995), the use of this equation determined the adsorption parameters such as the highest bonding rate or monolayer coverage, the transition point of the isotherm, the magnitude of the absorbent's absorbability and the slope parameter. Site-size, maximum fractional occupancy, the binding ratio at the transition point, binding constant, the initial binding constant, partition coefficient, and adsorption free energy values were also calculated by using the found adsorption values. Dye adsorption from all dyes solutions to CHP-E is considerably higher than CHP-N. An increasing linear relationship was found between swelling and adsorption. In conclusion, the sigmoidal equation approach can be a useful tool for chemists, chemical, agricultural and environmental engineers, polymer scientists to find the adsorption parameters of polymer adsorbents, and at the same time, it can be said that CHP can be used as a good sorbent in the removal of some chemical agents (such as dye molecules, organic molecules, biologically active molecules).

  相似文献   

16.
Dyestuff production units and dyeing units have always had a pressing need for techniques that allow economical pretreatment for color in the effluent. The effectiveness of adsorption for dye removal from wastewaters had made it an ideal alternative to other expensive treatment options. This paper deals with an investigation on alunite, existing wide reserves in Türkiye and in the world, for dye removal. Calcined alunite was utilized for this study and its performance evaluated against that of granular activated carbon (GAC). The use of calcined alunite for the removal of Acid Blue 40 and Acid Yellow 17 (AB 40 and AY 17) from aqueous solution at different calcination temperature and time, particle size, pH, agitation time and dye concentration has been investigated. The adsorption followed by Langmuir and Freundlich isotherms. The process follows first order adsorption rate expression and the rate constant was found to be 7.65 × 10–2 and 5.74 × 10–2 min–1 for adsorption of AB 40 and AY 17 on calcined alunite, and 8.41 × 10–2 and 10.04 × 10–2 min–1 for adsorption of AB 40 and AY 17 on GAC, respectively. The equilibrium saturation adsorption capacities were 212.8 mg dye/g calcined alunite and 151.5 mg dye/g calcined alunite for AB 40 and AY 17, respectively. The adsorption capacities were found to be 57.47 mg and 133.3 mg dye per g of GAC for AB 40 and AY 17, respectively. The results indicate that, for the removal of acid dye, calcined alunite was most effective adsorbent, although comparable dye removals were exhibited by GAC.  相似文献   

17.
Use of activated carbon (AC) prepared from rice husk and treated with anionic surfactant is investigated to eliminate cationic dye crystal violet (CV) using modelled dye solution. AC modified with anionic surfactant sodium lauryl sulfate (ACSLS) and other two surfactant namely sodium dodecyl sulfonate and hexadecyl trimethyl ammonium bromide were used for the analysis. Optimum ACSLS was analyzed and characterized using BET, XRD, SEM accompanied with XEDS, FTIR, HR-TEM and zeta potential, which confirms the sorption of CV onto ACSLS. Influence of pH, dose of adsorbent, concentration of initial dye, contact time, additive salts as well as actual water samples were investigated. Presence of NH4+, Ca2+, Mg2+, Na2+, Ca2+ and K+ cations in dye solution were having negligible (less than 4 %) influence on dye removal capacity. Study of mass transfer parameters revealed intra particle diffusion and film diffusion both played their part, whereas other kinetic studies has shown that experimental data fitted best with Pseudo 2nd order rate. Isotherm studies accompanied with error analysis revealed that Langmuir isotherm controls the adsorption equilibrium with highest capacity of CV adsorption with optimum operating conditions as pH = 6, temperature = 318 K, adsorbent dose = 100 mg/L and dye concentration = 30–60 mg/L. Study of thermodynamics and temperature analysis have shown that the sorption reaction was favourable and spontaneous with rise in temperature and endothermic in nature. Column studies are reported for varying rate of flow, depth of bed and dye concentrations along with analysis of column experimental data with various models like Yoon-Nelson, Thomas, Bohart-Adam and Clark model. Reusability (no. of cycles) of used adsorbent was studied using regeneration experiments. Analysis inferred that AC modified using surfactants can be a useful technique for enhanced adsorption capacity of dyes from aqueous solution and not much work has been reported on use of anionic surfactant modified AC for dye removal process.  相似文献   

18.
A novel biodegradable adsorbent called pyrolysed empty fruit bunch fibres (PEF) was prepared by chemo-physical activation of empty fruit bunch fibres (EFB) biochar for removal of cibacron blue 3G-A (CB) dye from aqueous solution. PEF was characterized using FTIR, SEM-EDX, XRD and BET techniques. The N2 adsorption-desorption isotherms indicated PEF’s surface area to be 362.84 m2g−1 and XRD attributed amorphous nature to PEF. After adsorption process, PEF has smoother surface morphology, increase in carbon by weight and shift in functional groups. The established adsorption optimum conditions were pH 10, 45 min contact time and 0.10 g/100 mL adsorbent dosage with 99.05% CB dye removal capacity at 343 K and initial dye concentration 100 mg/L. Desorption ratio >90% after seventh cycle of adsorption-desorption experiments confirmed high reusability (regeneration) of PEF. Pseudo second order kinetic and Freundlich were better fitted with kinetic and isotherm model respectively, while mechanism of adsorption was controlled by film diffusion (external mass transfer). Thermodynamic studied revealed ΔG, ΔS and ΔH to be −3.12 MJ/mol K, 9.11 kJ/mol K, 6.83 kJ/mol respectively at 343 K. The negative value of ΔG, positive values of ΔS and ΔH indicated spontaneity, feasibility and endothermic nature of CB dye adsorption from aqueous solution onto PEF.  相似文献   

19.
The adsorption-exchange equilibrium time and the adsorption isotherms of UO2 2+,137Cs,169Yb and HPO4 2− on modified peat have been investigated by batch experiments. The effect of pH on the adsorption-exchange percentage (E) and the distribution coefficients (K d) was also examined. It was found that the adsorption-exchange of UO2 2+ and169Yb on the modified peat was described well by Freundlich isotherm, whereas the adsorption-exchange of137Cs and HPO4 2− on modified peat corresponded to a Langmuir isotherm and the maximum adsorption capacities of the modified peat for137Cs and HPO4 2− ions were 4.4 and 4.1 μg/g respectively. The optimum pH for the adsorption-exchange of UO2 2+,137Cs,169Yb and HPO4 2− on the modified peat was 7.0 at 25°C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号