首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
An electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s?1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.  相似文献   

2.
采用从头算方法,讨论了9,10-二氰基蒽(DCA)和杜烯(DUR)间光诱导电子转移反应的态-态跃迁.考虑基组重叠误差(BSSE)对相互作用能的校正,用MP2方法优化得到重叠式[DCA…DUR]配合物的稳定构型.用单激发组态相互作用(CIS)方法讨论了[DCA…DUR]配合物的光诱导电荷分离和电荷复合过程.根据广义Mulliken-Hush(GMH)模型,计算了电荷复合过程的电子耦合矩阵元.结果表明,[DCA…DUR]配合物的S0→S1和S0→S2跃迁产生了两个强的局域激发态,S0→S3跃迁直接导致电荷分离态,小的振子强度预测该电荷转移(CT)跃迁是一弱跃迁,电荷分离态S3衰变到低局域激发态或基态的电荷复合是可能的.  相似文献   

3.
Electron transfer reaction between a simplified model model molecule of α-amino carbon-centered radical and O2 has studied with ab initio calculations at the MP2/6-31 G^**//UHF/6-31 G^** level,The reactant complex and the ion pair complex have been optimized and employed to perform calculation of the reaction heat and the reorganization energy,Solvent effects have been considered by applyning the conductor-like screening model,Theoretical results show that the highly endothermic charge separation process ,in which one electron transfers from the α-amino carbon-centered radical to O2,so as to form an ion pair complex,is difficult to occur in gas-phase,By apply-ing an external electronic field to prepare the charge-locallized molecular orbitals,the charge-separated state has been obtained using the initial-guess-induced self-consistent field technique,The theoretical investigations indicate that the solvent effect in the process of the oxidation of α-animo carbon-centered radical by O2 is remarkable.From the rate constant estima-tion ,it can be predicted that the oxidation of the model donor molecule by O2 can proceed,but not very fast.A peroxyl radi-cal compound has been found to be a competitive intermediate in the oxidation process.  相似文献   

4.
Photoinduced electron transfer and charge separation processes in zinc phthalocya-nine-viologen linked system have been studied and the distance effect of donor/acceptor on electron transfer reaction is discussed. It is indicated that the fluorescence from the zinc phthalocyanine moiety is appreciably quenched and the life-time of singlet excited state is reduced by the pendant viologen. Time-resolved transient absorption spectra measurements show that intramolecular quenching of the triplet state of zinc phthalocyanine by the attached viologen results in charge separation giving reduced viologen radical alive for a rather long period with hundred microsecond duration. The effect of the carbon chain length on the electron transfer rate constant and charge separation efficiency suggests that upon excitation, the zinc phthalocyanine and viologen groups tend to take closer conformation with the increase of the carbon chain examined. The rate constant for the intramolecular electron transfer ket with n = 3  相似文献   

5.
A series of truly water-soluble C(60)/porphyrin electron donor-acceptor conjugates has been synthesized to serve as powerful mimics of photosynthetic reaction centers. To this end, the overall water-solubility of the conjugates was achieved by adding hydrophilic dendrimers of different generations to the porphyrin moiety. An important variable is the metal center of the porphyrin; we examined zinc(II), copper(II), cobalt(II), nickel(II), iron(III), and manganese(III). The first insights into electronic communication between the electron donors and the electron acceptors came from electrochemical assays, which clearly indicate that the redox processes centered either on C(60) or the porphyrins are mutually affected. Absorption measurements, however, revealed that the electronic communication in terms of, for example, charge-transfer features, remains spectroscopically invisible. The polar environment that water provides is likely to be a cause of the lack of detection. Despite this, transient absorption measurements confirm that intramolecular charge separation processes in the excited state lead to rapid deactivation of the excited states and, in turn, afford the formation of radical ion pair states in all of the investigated cases. Most importantly, the lifetimes of the radical ion pairs were found to depend strongly on several aspects. The nature of the coordinated metal center and the type of dendrimer have a profound impact on the lifetime. It has been revealed that the nature/electronic configuration of the metal centers is decisive in powering a charge recombination that either reinstates the ground state or any given multiplet excited state. Conversely, the equilibrium of two opposing forces in the dendrimers, that is, the interactions between their hydrophilic regions and the solvent and the electronic communication between their hydrophobic regions and the porphyrin and/or fullerene, is the key to tuning the lifetimes.  相似文献   

6.
李象远  周春  李泽荣 《化学学报》2000,58(2):189-193
以两态模型为基础,用从头算方法,在DZP[所有原子带极化函数的Dunning(9s,5p)/(3s,2p)]基组水平上对四氰基乙烯与四甲基乙烯间的电子转移进行理论计算。通过孤立给体和受体的几何构型优化,计算了给体的电离能和受体的电子亲和能。计算表明,在光诱导电荷分离之后的返回电子转移处于高放热的Marcus反转区。通过碰撞配合物的结构优化和电荷分离处理,在线性反应坐标近似下得到四甲基乙烯-四氰基乙烯配合物电荷分离反应的双势阱,进而获得反应热,键重组能,以及跃迁能。  相似文献   

7.
Ab initio calculations were performed to investigate the charge separation and charge recombination processes in the photoinduced electron transfer reaction between tetracyanoethylene and acenaphthylene. The excited states of the charge‐balanced electron donor–acceptor complex and the singlet state of ion pair complex were studied by employing configuration interaction singles method. The equilibrium geometry of electron donor–acceptor complex was obtained by the second‐order Møller–Plesset method, with the interaction energy corrected by the counterpoise method. The theoretical study of ground state and excited states of electron donor–acceptor complex in this work reveals that the S1 and S2 states of the electron donor–acceptor complexes are excited charge transfer states, and charge transfer absorptions that corresponds to the S0 → S1 and S0 → S2 transitions arise from π–π* excitations. The charge recombination in the ion pair complex will produce the charge‐balanced ground state or excited triplet state. According to the generalized Mulliken–Hush model, the electron coupling matrix elements of the charge separation process and the charge recombination process were obtained. Based on the continuum model, charge transfer absorption and charge transfer emission in the polar solvent of 1,2‐dichloroethane were investigated. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 23–35, 2003  相似文献   

8.
A couple of corrole–perylene carboximide dyads ( C2‐PIa and C2‐PIx ) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge‐separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties. High spectroscopic energy levels of the perylene carboximide derivatives (PIs) allow a fast charge separation to be maintained in competition with an energy‐transfer process from the PI to the corrole unit. Yields and lifetimes of charge separation in toluene are, respectively, 75 % and 2.5 μs for C2‐PIa and 65 % and 24 ns for C2‐PIx . The results and the effect of solvent polarity are discussed in the framework of current energy‐ and electron‐transfer theories.  相似文献   

9.
A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3‐cyclohexadiene moiety integrated into the π‐conjugated structural backbone has been carried out. Dye‐sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo‐to‐electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent‐dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower‐energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge‐transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher‐charge‐injection excited states to the lowest TICT state renders the back‐electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b ‐based DSSC compared to the DSSCs with reference dyes 4 a and 32 , which further illustrates the positive influence of the TICT state on the performance of DSSCs.  相似文献   

10.
A series of arrays for light‐driven charge separation is presented, in which perylene tetracarboxylic bisimide is the light‐absorbing chromophore and electron acceptor, whereas isoxazolidines are colourless electron donors, the electron‐releasing properties of which are increased with respect to the amino group by means of the α‐effect. Charge separation (CS) in toluene over a distance ranging from ≈10 to ≈16 Å, with efficiencies of ≈95 to ≈50 % and CS lifetimes from 300 ps to 15 ns, are demonstrated. In dichloromethane the charge recombination reaction is faster than charge separation, preventing accumulation of the CS state. The effects of solvent polarity and molecular structure are discussed in the frame of current theories.  相似文献   

11.
A series of zinc(II) porphyrin-imide dyads (ZP-Im), in which an electron donating ZP moiety is directly connected to an electron accepting imide moiety in the meso position, have been prepared for the examination of energy gap dependence of intramolecular electron transfer reactions with large electronic coupling. The nearly perpendicular conformation of the imide moiety towards the porphyrin plane has been revealed by Xray crystal structures. The energy gap for charge separation, 1ZP* - Im --> ZP+ - Im-, is varied by changing the electron accepting imide moiety to cover a range of about 0.8 eV in DMF. Definitive evidence for electron transfer has been obtained in three solvents (toluene, THF, and DMF) through picosecond-femtosecond transient absorption studies, which have allowed us to determine the rates of photoinduced charge separation, 1ZP* - Im --> ZP+ - Im-, and subsequent thermal charge recombination ZP+ - Im- --> ZP - Im. The free-energy gap dependence (energy gap law) has been probed from the normal to the nearly top region for the charge separation rate alone, and only the inverted region for the charge recombination rate. Although both of the energy gap dependencies can be approximately reproduced by means of the simplified semiclassical equation, when we take into consideration the effect of the high frequency vibrations replaced by one mode of averaged frequency, many features, including the effects of solvent polarity and the electron tunneling matrix element on the energy gap law, differ considerably from those of the previously studied porphyrin-quinone systems, which have weaker interchromophore electronic interactions.  相似文献   

12.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

13.
The charge‐transfer process in noncovalent perylenediimide (PDI)/DNA complexes has been investigated by using nanosecond laser flash photolysis (LFP) and photocurrent measurements. The PDI/DNA complexes were prepared by inclusion of cationic PDI molecules into the artificial cavities created inside DNA. The LFP experiments showed that placement of the PDI chromophore at a specific site and included within the base stack of DNA led to the efficient generation of a charge‐separated state with a long lifetime by photoexcitation. When two PDI chromophores were separately placed at different positions in DNA, the yield of the charge‐separated state with a long lifetime was dependent upon the number of A–T base pairs between the PDIs, which was explained by electron hopping from one PDI to another. Photocurrent generation of the DNA‐modified electrodes with the complex was also dependent upon the arrangement of the PDI chromophores. A good correlation was obtained between observed charge separation and photocurrent generation on the PDI/DNA‐modified electrodes, which demonstrated the importance of the defined arrangement and assembly of organic chromophores in DNA for efficient charge separation and transfer in multichromophore arrays.  相似文献   

14.
We have realized for the first time a series of truly water‐soluble and tightly coupled porphyrin/C60 electron‐donor–acceptor conjugates in which the charge separation and charge recombination dynamics are controlled by modifying the nature of the dendrimer and/or the choice of the central metal atom.  相似文献   

15.
An electron donor–acceptor dyad (quaterthiophene–anthraquinone) mediates ultrafast intramolecular photoinduced charge separation and consequent charge recombination when in polar or moderately polar solvents. Alternatively, non-polar media completely impedes the initial photoinduced electron transfer by causing enough destabilization of the charge-transfer state and shifting its energy above the energy of the lowest locally excited singlet state. Furthermore, femtosecond transient-absorption spectroscopy reveals that for the solvents mediating the initial photoinduced electron-transfer process, the charge recombination rates were slower than the rates of charge separation. This behavior of donor–acceptor systems is essential for solar-energy-conversion applications. For the donor–acceptor dyad described in this study, the electron-transfer driving force and reorganization energy place the charge-recombination processes in the Marcus inverted region.  相似文献   

16.
The effect of photon flux on the yield and lifetime of charge separation over the extreme components of a D-Ir-A triad, where D is a triphenyl amine electron donor, A is a naphthalene bis(imide) electron acceptor and Ir is an Ir(III) bis(terpyridine) complex, has been investigated. In usual laboratory conditions, with nanosecond and picosecond laser pulses in the 4-8 mJ range, biphotonic processes take place. Biphotonic products and their evolution can introduce complications in reaction mechanisms and their interpretation but can also drastically reduce the yield and the lifetime of the charge-separated state. In the present case, after discussion of several possible mechanisms, the process detrimental to charge separation is ascribed to absorption of a photon by the photogenerated charge-separated state D(+)-Ir-A(-).  相似文献   

17.
For the first time, a C60 derivative ( 1 ) and two different lanthanum metallofullerene derivatives, La@C82Py ( 2 ) and La2@C80Py ( 3 ), that feature a pyridyl group as a coordination site for transition‐metal ions have been synthesized and integrated as electron acceptors into coordinative electron‐donor/electron‐acceptor hybrids. Zinc tetraphenylporphyrin ( ZnP ) served as an excited‐state electron donor in this respect. Our investigations, by means of steady‐state and time‐resolved photophysical techniques found that electron transfer governs the excited‐state deactivation in all of these systems, namely 1/ZnP , 2/ZnP , and 3/ZnP , whereas, in the ground state, notable electronic interactions are lacking. Variation of the electron‐accepting fullerene or metallofullerene moieties provides the incentive for fine‐tuning the binding constants, the charge‐separation kinetics, and the charge‐recombination kinetics. To this end, the binding constants, which ranged from log Kassoc=3.94–4.38, are dominated by axial coordination, with minor contributions from the orbital overlap of the curved and planar π systems. The charge‐separation and charge‐recombination kinetics, which are in the order of 1010 and 108 s?1, relate to the reduction potential of the fullerene and metallofullerenes, respectively.  相似文献   

18.
[2]Catenanes made up of several polyether-strapped porphyrin macrocycles interlinked with the cyclic electron acceptor cyclobis(paraquat-p-phenylene) were spectroscopically, photophysically, and electrochemically characterized. The catenanes exhibit very rich redox behavior due to the presence of several different and interacting electro-active subunits. The redox patterns represent useful "fingerprints" that provide detailed information on the electronic interactions and the chemical environments that the electroactive subunits experience in the supramolecular arrays. A photoinduced electron transfer from the porphyrin excited state (charge separation CS) occurs with tau=20 ps in the catenanes with a larger strap and faster than 20 ps (instrumental resolution) in the catenanes with a shorter strap. The resulting charge-separated state recombines to the ground state (charge recombination CR) with lifetimes similar in all cases, 41+/-4 ps. Comparison of the electron transfer rates CS and CR in the host-guest complexes of the same porphyrins with the noncyclic electron acceptor paraquat, indicate slower reactions in the [2]catenanes. This behavior is assigned to the different separation between reacting partners determined by the type of bond (weak interaction or mechanical) and to a two-step consecutive electron transfer to different sites of the macrocyclic electron acceptor in the catenanes which retards charge recombination.  相似文献   

19.
Using a combination of cycloaddition-retroelectrocyclization reaction, free-base and zinc porphyrins (H2P and ZnP) are decorated at their β-pyrrole positions with strong charge transfer complexes, viz., tetracyanobuta-1,3-diene (TCBD)-phenothiazine ( 3 and 4 ) or TCBD-aniline ( 7 and 8 ), novel class of push-pull systems. The physico-chemical properties of these compounds (MP-Donor and MP-TCBD-Donor) have been investigated using a range of electrochemical, spectroelectrochemical, DFT as well as steady-state and time-resolved spectroscopic techniques. Ground-state charge transfer interactions between the porphyrin and the electron-withdrawing TCBD directly attached to the porphyrin π-system extended the absorption features well into the near-infrared region. To visualize the photo-events, energy level diagrams with the help of free-energy calculations have been established. Switching the role of porphyrin from the initial electron acceptor to electron donor was possible to envision. Occurrence of photoinduced charge separation has been established by complementary transient absorption spectral studies followed by global and target data analyses. Better charge stabilization in H2P derived over ZnP derived conjugates, and in phenothiazine derived over aniline derived conjugates has been possible to establish. These findings highlight the importance of the nature of porphyrins and second electron donor in governing the ground and excited state charge transfer events in closely positioned donor-acceptor conjugates.  相似文献   

20.
In the present article, the electronic structure of 4‐nitroquinoline‐1‐oxide (4NQO) has been theoretically investigated at the level of HFSCF/6‐31G**. Conformation of monomeric 4NQO has been found to be the most stable when the nitro group twists from the quinoline plane by about 24°. The absorption spectra of the twisted 4NQO have been calculated by using complete active space self‐consistent field method. The hydrogen bonded complexes of 4NQO and tryptophan have been intensively studied. The absorption spectra of the most stable complex have been calculated to investigate the photoinduced electron transfer between 4NQO and tryptophan. The first and second excited singlet states are found to be charge‐separated. Population analysis shows that the low‐lying triplet states are charge‐separated as well, except for the lowest one that presents the characters of a locally excited state. A solvent effect on transition energies has been considered based on the Ooshika–Lippert–Martaga equation. Theoretical study shows that the optical excitation can lead to charge separation in the 4NQO–tryptophan complex. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号