首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Metal Complexes with N2O2S2 Donor Set. Synthesis and Characterization of the Cobalt(II), Nickel(II), and Copper(II) Complexes of a 15‐ and a 16‐Membered Bis(2‐hydroxyethyl) Pendant Macrocyclic Ligand The macrocyclic ligands 6, 10‐bis(2‐hydroxyethyl)‐7, 8, 9, 11, 17, 18‐hexahydro‐dibenzo‐[e, n][1, 4, 8, 12]‐dithiadiaza‐cyclopentadecine ( 1 ) (L1) and 5, 13‐bis(2‐hydroxyethyl)‐7, 8, 9, 10, 16, 17, 18, 19, 20‐nonahydro‐dibenzo‐[g, o][1, 9, 5, 13]‐dithiadiaza‐cyclohexadecine (L4) have been prepared. They form the stable complexes [CoL1(‐H)CoL1](ClO4)3 ( 2 ), [NiL1](ClO4)2·MeOH ( 3 ), Λ‐[CuL1](ClO4)2·MeOH ( 4a ) and rac‐[CuL1](ClO4)2·MeOH ( 4b ), [NiL4](ClO4)2 ( 5 ), and [CuL4](ClO4)2 ( 6 ). The compounds 1 to 6 have been characterized by standard methods and single‐crystal X‐ray diffraction. In the complexes 2 to 6 the metal atoms are octahedrally coordinated by the N2O2S2 donor set of the ligands. L1 and L4 are folded herein along the N···M···S‐ and the N···M···N′‐axes, respectively. This results at the metal atom in a allcis‐configuration for the complexes of L1 and a trans‐N2cis‐O2cis‐S2‐configuration for the complexes of L4. The cobalt(II) complex 2 is a dimer, bridged by a rather short hydrogen bridge of 2.402(12)Å length. The copper(II) complexes of L1 and L4 differ with respect to the Jahn‐Teller‐distortion.  相似文献   

2.
rac‐Bis{μ‐trans‐2,2′‐[pentane‐1,5‐diylbis(azanediyl)]ditroponato}dipalladium(II), [Pd2(C19H20N2O2)2], has been synthesized and fully characterized using single‐crystal X‐ray diffraction, 1H NMR, FT–IR and mass spectroscopy. The trans coordination, vaulted structure and anti conformation have been unequivocally established from the X‐ray diffraction studies. This is the first example of a bis(aminotroponato)palladium complex. In the crystalline state, the molecule has twofold symmetry and each molecular unit undergoes intermolecular offset π‐stacking of the tropone rings to afford heterochiral interpenetrating dimers that are aligned in a lamellar manner with a herringbone packing motif.  相似文献   

3.
Crystal Growth and Refinement of the Crystal Structure of Mercury(II) Amide Chloride – HgClNH2 Single crystals were prepared by recrystallization of HgClNH2 from aqueous NH3/NH4+ solution at 160 °C. They were used for a single‐crystal X‐ray structure redetermination. The previously reported [W. N. Lipscomb, Acta. Crystallogr. 1951 , 4, 266.] structural topology determined on basis of X‐ray powder diffraction data is now confirmed. However, a higher symmetry is found: Space group type Pmma (instead of Pmm2), a = 6.709(1) Å, b = 4.351(1) Å, c = 5.154(1) Å, Z = 2. The crystal structure contains zig‐zag‐chains [Hg(NH2)2/2]+. Four Cl atoms complete the coordination sphere of Hg to a distorted octahedron. These share common faces and edges in layers [HgCl4/4(NH2)2/2]. These layers are connected via hydrogen bonds N–H…Cl.  相似文献   

4.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

5.
A new zinc(II) complex of N‐(piperidylthiocarbonyl)benzamide, [ZnL2], has been synthesized and characterized using elemental analysis, Fourier transform infrared and 1H NMR spectroscopies. X‐ray diffraction indicates that [ZnL2] presents a tetrahedral structure within an O2S2 donor set, which is different from analogous square planar [NiL2] and [CuL2] available in the literature. The antimicrobial activities of [ZnL2], [NiL2] and [CuL2] were evaluated against fungi and bacteria. The results show that [ZnL2] is the best for control of the studied fungi and bacteria, and its antimicrobial activity is close to that exhibited by commercial products. The relationship between the structures and antimicrobial activities of the complexes was further investigated using density functional theory calculations. It is elucidated that the increase of the polarity of carbonyl and thiocarbonyl groups determines antifungal and antibacterial activities. Moreover, the cytotoxicity of the complexes was tested against human cancer cells (hepatocellular carcinoma (SK‐Hep‐1) and breast carcinoma (MCF‐7)). The [CuL2] complex is found to be the most cytotoxic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The series of binuclear Cu(II) and Ni(II) complexes with an asymmetrical exchange fragment based on 2,6‐diformyl‐4‐methylphenol bishydrazone has been synthesized for the first time. The compositions and structures of both ligands and its complexes have been established with the data of IR, 1H NMR, and extended X‐ray absorption fine structure (EXAFS) spectroscopical studies as well as magnetic measurements. The structure of [Ni2L3(μ‐Pz)] · 2CH3OH (L = triply deprotonated form of bishydrazone, Pz = pyrazol) was confirmed by X‐ray crystallographic analysis. In this complex, the coordination environment of two nickel ions is quite different, one nickel atom is square‐planar and the other is distorted octahedral coordinated. The values of exchange parameter calculated in terms of HDVV theory have been compared with the features of an asymmetrical exchange fragment's electronic and geometrical structure.  相似文献   

7.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

8.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

9.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

10.
High‐nuclearity metal clusters have received considerable attention not only because of their diverse architectures and topologies, but also because of their potential applications as functional materials in many fields. To explore new types of clusters and their potential applications, a new nickel(II) cluster‐based mixed‐cation coordination polymer, namely poly[hexakis[μ4‐(2‐carboxylatophenyl)sulfanido]di‐μ3‐chlorido‐tri‐μ2‐hydroxido‐octanickel(II)sodium(I)], [Ni8NaCl2(OH)3(C7H4O2S)6]n, 1 , was synthesized using nickel chloride hexahydrate and mercaptobenzoic acid (H2mba) as starting reactants under hydrothermal conditions. The material was characterized by single‐crystal X‐ray diffraction (SCXRD), Fourier transform IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction and X‐ray photoelectron spectroscopy analysis. SCXRD shows that 1 consists of a hexanuclear nickel(II) [Ni6] cluster, dinuclear NiII nodes and a mononuclear NaI node, resulting in the formation of a complex covalent three‐dimensional network. In addition, a tightly packed NiO/C&S nanocomposite is fabricated by sintering the coordination precursor at 400 °C. The uniform nanocomposite consists of NiO nanoparticles, incompletely carbonized carbon and incompletely vulcanized sulfur. When used as a supercapacitor electrode, the synthesized composite shows an extra‐long cycling stability (>5000 cycles) during the charge/discharge process.  相似文献   

11.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

12.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

13.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

14.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Complexes with Macrocyclic Ligands. V Dinuclear Copper(II) Complexes with Chiral Macrocyclic Ligands of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of four chiral, dinuclear, macrocyclic, cationic copper(II) complexes, [Cu2(Lm,n)]2+ ( 1 – 4 ), are described. The two symmetrical compounds [Cu2(L2,2)][ClO4]2 ( 1 and 2 ) were synthesized in a one‐step reaction from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐perchlorate and the chiral diamine (1S,2S)‐1,2‐diphenylethylenediamine (synthesis of 1 ) and (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 2 ), respectively. For the synthesis of the two unsymmetrical compounds [Cu2(LPh,n)][ClO4]2 ( 3 and 4 ) the mononuclear, neutral copper(II) complex [CuLPh] ( 5 ) [synthesized from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐acetate and 1,2‐phenylenediamine] was reacted with (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 3 ) and (S)‐1,1′‐binaphthyl‐2,2′‐diamine (synthesis of 4 ), respectively. The structures of the two unsymmetrical copper(II) compounds ( 3 and 4 ) were determined by X‐ray diffraction.  相似文献   

16.
The compound [Cu42‐OH)23‐OH)2Cl2(bipy)4]Cl2 · 6H2O ( 1 ) was obtained by recrystallization of [Cu(HB)2(2, 2′‐bipy)] · H2O (H2B = diphenylglycolic acid) from EtOH/CH2Cl2 and their structure has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as based on a Cu4(OH)4 core with a “stepped cubane” structure. The coordination polyhedron around each copper is a distorted square pyramid. The tetranuclear units are linked in the crystal by C‐H…Cl hydrogen bonds and by π‐π interactions between bipyridine rings. IR data are also presented.  相似文献   

17.
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X‐ray diffraction. The structures consist of discrete [CuCl4]2? anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2? anions of both compounds have flattened tetrahedral geometries. There are several N—H?Cl weak bonds that join the [CuCl4]2? anions and the organic cations helping retain the pseudo‐tetrahedral geometries of the anions.  相似文献   

18.
Copper(II)–Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric CuII complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3‐{[(3‐hydroxypropyl)imino]methyl}‐4‐nitrophenol (H2L ) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single‐crystal X‐ray diffraction analysis and a photoluminescence study. The CuII atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O—H…O hydrogen bonds link the molecules to form a one‐dimensional chain structure and π–π contacts also connect the molecules to form a three‐dimensional structure. The solid‐state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.  相似文献   

19.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

20.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号