首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

2.
In the title compound, [UO2(C15H11O2)2(C14H14OS)], the UVI atom is coordinated by seven O atoms in a distorted pentagonal–bipyramidal geometry. Both di­phenyl­propane‐1,3‐dionate systems are nearly planar. The sulfoxide moiety is in a distorted tetrahedral geometry, while its two aromatic rings are nearly orthogonal to one another. The crystal packing is stabilized by two bifurcated hydrogen‐bonding interactions involving both uranyl O atoms.  相似文献   

3.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

4.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

5.
UO2(H2AsO4)2 · H2O was synthesized by dissolving elemental uranium in arsenic acid (80.5%) for twelve weeks at room temperature. The resulting small crystals were transparent and of yellow‐green color. The crystal structure was refined from single‐crystal X‐ray data: C2/c, a = 1316.4(3) pm, b = 886.2(2) pm, c = 905.0(3) pm, β = 124.41(3)°, R1 = 0.023, wR2 = 0.060, 981 structure factors, and 65 variable parameters. The uranium atoms of this new structure type are coordinated by two very close oxygen atoms in linear arrangement. Four further oxygen atoms which belong to four different AsO4 tetrahedra and the oxygen atom of the water molecule complete the 7‐fold coordination of the uranium atoms. [UO2(H2O)]2+ and two H2AsO4 units form infinite electroneutral chains which are the main building units of the structure and which are interconnected by hydrogen bridging bonds. IR heating experiments show that dehydration around 500 K leads to a complete decomposition of the structure. Magnetic measurement gave a diamagnetic behavior with a susceptibility of χ = –8.68 10–9 m3/mol in good agreement with the diamagnetic increment of the compound (χ = –8.20 10–9 m3/mol) calculations with U6+.  相似文献   

6.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

7.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

8.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

9.
The title compound, aqua­tris­(nitrato)[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]samarium dihydrate, [Sm(NO3)3­(C18H12N6)­(H2O)]·­2H2O, was prepared from Sm(NO3)3·6H2O and 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine. The metal atom is ten‐coordinate being bonded to the terdentate TPTZ ligand, three bidentate nitrates and a water mol­ecule.  相似文献   

10.
The title compound, [CrSn(C6H5)3(C7H6NO2)3Cl][Sn(C6H5)3Cl(CH4O)], was obtained from the reaction of Ph3SnCl with the complex [Cr(C7H6NO2)3] in methanol. The structure contains [Ph3SnCl(MeOH)] (A) and [Ph3SnClCr(C7H6NO2)3] (B) mol­ecules. In mol­ecule A, the Sn atom of Ph3SnCl is coordinated by one methanol mol­ecule. In mol­ecule B, the Sn atom of Ph3SnCl is coordinated by one carboxyl­ate O atom of [Cr(C7H6NO2)3]. Mol­ecules A and B are connected through an O—H⋯O hydrogen bond between a carboxyl­ate O atom and the methanol OH group. Weak C—H⋯Cl inter­actions and O—H⋯O hydrogen bonds extend the components of (I) into a two‐dimensional network.  相似文献   

11.
In the centrosymmetric dinuclear anions of the title bimetallic complex, {[Mg(H2O)6][Cu2(C8H2NO7)2]·2H2O}n, each CuII ion is strongly coordinated by four O atoms in a distorted square‐planar geometry. Two of these O atoms belong to phenolate groups and the other two to carboxylate groups from 5‐nitro‐2‐oxidoisophthalate (L1) trianions, derived from 5‐nitrobenzene‐1,2,3‐tricarboxylic acid (O2N–H3L). The phenolate O atoms bridge the two CuII ions in the anion. In addition, each CuII cation interacts weakly with a symmetry‐related carboxylate O atom of an adjacent L1 ligand, giving a square‐pyramidal coordination geometry. The copper residue forms a ladder‐like linear coordination polymer via L1 ligands. The [Mg(H2O)6]2+ cations sit on centres of inversion. The polymeric anions, cations and free water molecules are self‐assembled into a three‐dimensional supramolecular network via O—H...O hydrogen bonds.  相似文献   

12.
By slow evaporation of solutions containing UO2(ClO4)2 and an excess of HClO4, single crystals of [UO2(ClO4)2(H2O)3] ( 1 ) and [UO2(H2O)5](ClO4)2 ( 2 ) were obtained and their structures were determined. From similar solutions prepared from stoichiometric amounts of UO3 and perchloric acid, crystals of [UO2(H2O)5](ClO4)2·2H2O ( 3 ) were obtained. The trihydrate (monoclinic, P21/c, a = 545.44(1) pm, b = 1811.09(5) pm, c = 1032.46(2) pm, β = 90.016(1)°) consists of uranyl ions, which are coordinated by two monodentate perchlorate ions and three water molecules. The pentahydrate (monoclinic, P21/n, a = 529.35(2) pm, b = 1645.43(6) pm, c = 1480.18(6) pm, β = 99.847(1)°) contains uranyl ions coordinated by five water molecules. The same structural unit can be found in the heptahydrate, whose structure was re‐determined (orthorhombic, Pbcn, a = 920.9(3) pm, b = 1067.9(3) pm, c = 1445.7(3) pm). In this structure, two molecules of water of crystallization are present.  相似文献   

13.
The goals of the present study were (a) to create positively charged organo‐uranyl complexes with general formula [UO2(R)]+ (eg, R═CH3 and CH2CH3) by decarboxylation of [UO2(O2C─R)]+ precursors and (b) to identify the pathways by which the complexes, if formed, dissociate by collisional activation or otherwise react when exposed to gas‐phase H2O. Collision‐induced dissociation (CID) of both [UO2(O2C─CH3)]+ and [UO2(O2C─CH2CH3)]+ causes H+ transfer and elimination of a ketene to leave [UO2(OH)]+. However, CID of the alkoxides [UO2(OCH2CH3)]+ and [UO2(OCH2CH2CH3)]+ produced [UO2(CH3)]+ and [UO2(CH2CH3)]+, respectively. Isolation of [UO2(CH3)]+ and [UO2(CH2CH3)]+ for reaction with H2O caused formation of [UO2(H2O)]+ by elimination of ·CH3 and ·CH2CH3: Hydrolysis was not observed. CID of the acrylate and benzoate versions of the complexes, [UO2(O2C─CH═CH2)]+ and [UO2(O2C─C6H5)]+, caused decarboxylation to leave [UO2(CH═CH2)]+ and [UO2(C6H5)]+, respectively. These organometallic species do react with H2O to produce [UO2(OH)]+, and loss of the respective radicals to leave [UO2(H2O)]+ was not detected. Density functional theory calculations suggest that formation of [UO2(OH)]+, rather than the hydrated UVO2+, cation is energetically favored regardless of the precursor ion. However, for the [UO2(CH3)]+ and [UO2(CH2CH3)]+ precursors, the transition state energy for proton transfer to generate [UO2(OH)]+ and the associated neutral alkanes is higher than the path involving direct elimination of the organic neutral to form [UO2(H2O)]+. The situation is reversed for the [UO2(CH═CH2)]+ and [UO2(C6H5)]+ precursors: The transition state for proton transfer is lower than the energy required for creation of [UO2(H2O)]+ by elimination of CH═CH2 or C6H5 radical.  相似文献   

14.
The reactions of dimethyl-, diethyl- and dibutyltin(IV) oxides with pyridoxine (PN) in toluene/ethanol led to the formation of compounds [SnR2(PN-2H)] which were characterized by EI and FAB mass spectrometry and by IR, Raman, Mössbauer and 1H, 13C and 119Sn NMR spectroscopy. The structures of [SnEt2(PN-2H)] · CH3OH, [SnBu2(PN-2H)] and [SnEt2(PN-2H)(DMSO)] were determined by X-ray diffractometry. The first two contain dimeric [SnR2(PN-2H)]2 units in which two bridging-chelating pyridoxinate anions link the Sn atoms, while in [SnEt2(PN-2H)(DMSO)] the DMSO coordinates to the tin atom via its O atom in a similar dimeric unit.  相似文献   

15.
Two uranyl aqua sulfate compounds: [(CH3)3NCH2COOH] [UO2(Cl)(SO4)(H2O)] ( 1 ) and UO2((CH3)3NCH2COO)(SO4)(H2O) ( 2 ) were synthesized and their crystal structures were determined. The morphology changes between the two‐dimensional anionic structural unit of 1 and the neutral structural unit of 2 are examined, and the impact of their terminally coordinating ligands discussed.  相似文献   

16.
In the isomorphous title compounds, [Cd2(C8H4O4)2(C19H10ClFN4)2(H2O)2] and [Zn2(C8H4O4)2(C19H10ClFN4)2(H2O)2], the CdII centre is seven‐coordinated by two N atoms from one [2‐(2‐chloro‐6‐fluorophenyl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline (L) ligand, one water O atom and four carboxylate O atoms from two different benzene‐1,2‐dicarboxylate (1,2‐bdc) ligands in a distorted pentagonal–bipyramidal coordination, while the ZnII centre is six‐coordinated by two N atoms from one L ligand, one water O atom and three carboxylate O atoms from two different 1,2‐bdc ligands in a distorted octahedral coordination. Each pair of adjacent metal centres is bridged by two 1,2‐bdc ligands to form a dimeric structure. In the dimer, each L ligand coordinates one metal centre. The dimer is centrosymmetric, with a crystallographic inversion centre midway between the two metal centres. The aromatic interactions lead the dimers to form a two‐dimensional supramolecular architecture. Finally, O—H...O and N—H...O hydrogen bonds reinforce the two‐dimensional structures of the two compounds.  相似文献   

17.
The structure of the title compound, [Sn(C6H5)3(OH)]n, has been re‐investigated at 120 (2) K. The hydroxyl H atom was readily located and the threefold coordination about the O atom is planar. There are no hydrogen bonds involving the hydroxyl group, either as donor or as acceptor.  相似文献   

18.
In the title compound, [Ca(C6H5O4)2(C6H6O4)2]·4H2O, which is a kojic acid–Ca2+ complex, the Ca atom is on a twofold axis and is octacoordinated by O atoms from four pyrone ligand mol­ecules. The hydroxyl and ketone O atoms of each ligand form a five‐membered chelate ring with the Ca atom. The crystal structure is stabilized by partial stacking and O—H?O hydrogen bonds.  相似文献   

19.
The title complex, [Ba2Ni(C3H2O4)2(NO3)2(H2O)10]n, has a two‐dimensional layer structure. The Ni atom lies on a crystallographic centre of symmetry in an octa­hedral NiO6 environment, and is coordinated by four malonate O atoms in a planar arrangement and by two water mol­ecules in axial positions. The coordination of the unique Ba atom involves two nitrate O atoms, five water mol­ecules and three malonate O atoms.  相似文献   

20.
In the title coordination compound, [Cd(C8H3NO6)(C5H8N3)0.5(H2O)]n, each CdII atom is six‐coordinated in a distorted octahedral environment surrounded by three carboxylate O atoms from two different 5‐nitroisophthalate (5‐NIP2−) ligands, two N atoms from two distinct 1,6‐bis(1,2,4‐triazol‐1‐yl)hexane (bth) ligands and one water molecule. The CdII centres are bridged by the bth ligands, which lie across centres of inversion, to give a honeycomb‐like two‐dimensional layer structure; the layers are further connected by the bridging 5‐NIP2− ligands with a κ21‐μ2 coordination mode to generate the final three‐dimensional structure. Topologically, taking the the CdII atoms and the bth ligands as different four‐connected nodes and the 5‐NIP2− ligands as linkers, the three‐dimensional structure can be simplified to a rare `mesh of trees' (mot) net with the Schäfli symbol (66)(64.82)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号