首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensor for remote analysis of polycyclic aromatic hydrocarbons (PAHs) has been developed. It is based on direct solid phase extraction of the pollutants on a polymeric film, followed by monitoring the laser induced fluorescence, emitted from the film, via optical fibers. The proposed sensor has been applied to direct PAH analysis in clear and turbid aqueous environments. Linear calibration plots have been obtained for PAH solutions containing both humic substances and clay suspensions. Detection limits in the range of 10 ppt have been achieved. Results are obtained almost instantaneously (in drinking water) or within minutes, in more complicated matrices. This set-up has provided considerable improvement of the detection limits, when compared to the traditional fiber-optic fluorescence probe. In case of pyrene, a 100-fold and a 250-fold improvement in the detection limits have been obtained for the clay and humic substances-containing water, respectively. The spectral response of the polymeric film has been studied under various conditions and the feasibility of the method for analysis of PAH mixtures has been addressed.  相似文献   

2.
Successful coupling of imaging microscopy with Fourier transform spectrometry provides a new methodological approach. This was applied to the direct analysis of particulate deposits of polycyclic aromatic hydrocarbons (PAHs). The fluorescence signals of single microscopic particulates were found to be proportional to their mass, obtained from the corresponding HPLC results. Special fluorescence characteristics related to individual particle analysis were studied. The sensitivity of the proposed method to PAHs in soil is in the sub-ppb range, similar to HPLC results. Analysis of inhomogeneous PAH-particulates was demonstrated, as well as the resolution of photochemical products of PAHs. The effects of particulate orientation relative to the detector upon quantification are discussed.  相似文献   

3.
Successful coupling of imaging microscopy with Fourier transform spectrometry provides a new methodological approach. This was applied to the direct analysis of particulate deposits of polycyclic aromatic hydrocarbons (PAHs). The fluorescence signals of single microscopic particulates were found to be proportional to their mass, obtained from the corresponding HPLC results. Special fluorescence characteristics related to individual particle analysis were studied. The sensitivity of the proposed method to PAHs in soil is in the sub-ppb range, similar to HPLC results. Analysis of inhomogeneous PAH-particulates was demonstrated, as well as the resolution of photochemical products of PAHs. The effects of particulate orientation relative to the detector upon quantification are discussed.  相似文献   

4.
A solid-phase extraction (SPE) method using triacontyl bonded silica (C30) as sorbent was developed for the determination of 16 US Environmental Protection Agency polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matters quantitatively by gas chromatography-mass spectrometry (GC-MS). Optimization experiments were conducted using spiked standard aqueous solution of PAHs and real airborne particulates samples aiming to obtain highest SPE recoveries and extraction efficiency. Factors were studied in SPE procedures including the concentration of organic modifier, flow rate of sample loading and elution solvents. The ultrasonication time and solvents were also investigated. Recoveries were in the range of 68-107% for standard PAHs aqueous solution and 61-116% for real spiked sample. Limits of detection (LODs) and limits of quantification (LOQs) with standard solution were in the range of 0.0070-0.21 microgL(-1) and 0.022-0.67 microgL(-1), respectively. The optimized method was successfully applied to the determination of 16 PAHs in real airborne particulate matters.  相似文献   

5.
Comprehensive two-dimensional gas chromatography (GCxGC) offers favourable resolution and sensitivity compared with conventional one-dimensional gas chromatography (1D-GC), as reported in many studies. These characteristics are of major interest when analytes are in trace concentration, and are present in complex mixtures, as is the case of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. Whilst GCxGC has been widely applied to identification of different types of analytes in several matrices, less seldom has it been used for quantification of these analytes. Although several quantitative methods have been proposed, they may be tedious and/or require considerable user development. Whereas quantification in 1D-GC is a routine and well-established procedure, in GCxGC, it is not so straightforward, especially where novel or untested procedures have yet to be incorporated into software packages. In the present study, it is proposed that a subset of the modulated peaks generated for each solute may be summed, based on the specific target ion mass of each compound present in a certified standard reference material (SRM) 1649a (urban dust). The ratio between a PAH and its corresponding deuterated (PAH-d) form showed that there is no statistical loss of sensitivity when this ratio is calculated based on whether the total sum of modulated peaks, or if only the two or the three most intense modulated peaks, are employed. Manual integration may be required, and here was found to give more acceptable values than automatic integration. Automated integration has been shown here to underestimate the modulated peak responses when low concentrations of PAHs were analyzed. Although for most PAHs good agreement with the certified values were observed, the analytical method needs to be further optimized for some of the other PAH, as can be see with those PAH with high variability in the range of urban dust analyzed.  相似文献   

6.
This is the first of a series of two papers intended to review the state-of-the-art knowledge on atmospheric PAHs, concerning their monitoring, sources and transformation processes in the atmosphere. The monitoring section briefly introduces this class of compounds, mainly focusing on the 16 PAHs indicated by the US-EPA as priority pollutants. These compounds undergo partitioning between the gas phase and particulate, which has to be considered in the choice of the sampling methodology. Furthermore, sampling artifacts may arise from further phase transfers inside the sampling device. After sampling, extraction, clean up and detection/quantification procedures will follow. They are closely related since the choice of the extraction technique will heavily condition the clean-up step, and both procedures will place demands on the performance of the detection technique (usually GC-MS or HPLC). This is particularly true in the case of complex samples such as those arising from atmospheric sampling. The sources of atmospheric PAHs are then discussed with a particular focus on receptor models, which can allow the apportionment of PAH sources based on concentration data that can be routinely obtained by pollution control networks.  相似文献   

7.
Summary Daily samples of airborne particulates (143) were collected along the year in La Spezia (Italy). Seasonal variations of atmospheric PAH concentrations, with highest winter values, have been observed. The concentration of PAHs was found to correlate negatively with the mean ambient temperature during the sampling period. Volatilization, photodegradation and seasonal modifications of emissions from urban traffic were found to be a possible explanation of this phenomenon.  相似文献   

8.
The acid-induced cloud-point extraction (CPE) technique based on sodium dodecylsulfate (SDS) micelles has been used for preconcentration of ten representatives of polycyclic aromatic hydrocarbons (PAHs) for the following fluorescence determination. The effect of the acidity of solution, SDS and electrolyte concentrations, centrifugation time and rate on the two-phase separation process and extraction percentages of PAHs have systematically been examined. Extraction percentages have been obtained for all PAHs after CPE ranged from 67 to 93%. Pyrene was used as a fluorescent probe to monitor the micropolarity of the surfactant-rich phase compared with SDS micelles and this allows one to conclude that water content in micellar phase after CPE is reduced. The spectral, metrological and analytical characteristics of PAH fluorimetric determination after acid-based CPE with sodium dodecylsulfate are presented. Advantages provided by using CPE in combination with fluorimetric determination of PAHs are discussed. The determination of benz[a]pyrene in tap water is presented as an example.  相似文献   

9.
A fast and reliable method for the determination of trace PAHs (polynuclear aromatic hydrocarbons) in seawater by solid-phase microextraction (SPME) followed by gas chromatographic (GC) analysis has been developed. The SPME operational parameters have been optimized, and the effects of salinity and dissolved organic matter (DOM) on PAHs recoveries have been investigated. SPME measures only the portion of PAHs which are water soluble, and can be used to quantify PAH partition coefficient between water and DOM phases. The detection limits of the overall method for the measurement of sixteen PAHs range from 0.1 to 3.5 ng/g, and the precisions of individual PAH measurements range from 4% to 23% RSD. The average recovery for PAHs is 88.2±20.4%. The method has been applied to the determination of PAHs in seawater and sediment porewater samples collected in Jiaozhou Bay and Laizhou Bay in Shandong Peninsula, China. The overall levels of PAHs in these samples reflect moderate pollution compared to seawater samples reported elsewhere. The PAH distribution pattern shows that the soluble PAHs in seawater and porewater samples are dominated by naphthalenes and 3 ring PAHs. This is in direct contrast to those of the sediment samples reported earlier, in which both light and heavy PAHs are present at comparable concentrations. The absence of heavy PAHs in soluble forms (<0.1-3.5 ng/L) is indicative of the strong binding of these PAHs to the dissolved or solid matters and their low seawater solubility.  相似文献   

10.
Hashi Y  Wang TR  Du W  Lin JM 《Talanta》2008,74(4):986-991
A method using on-line enrichment and fast high-performance liquid chromatography (HPLC) with fluorescence detection has been developed and validated for the determination of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. The evaporation step for sample preparation can be eliminated since this system allows the injection of 1000microL of sample solution. PAH recoveries were between 87% and 120% for spiked atmospheric particulate samples. The limit of detection was 0.02-0.23ng/mL (signal/noise ratio=3.3). There was good linear correlation between HPLC peak area and PAH concentration, with a linear range of 0.4-40ng/mL and correlation coefficients >0.997. Furthermore, compared to conventional approaches that include an evaporation step, the method proposed is acceptable for detecting PAHs in atmospheric particulate samples.  相似文献   

11.
In this review, we focus on the status of the monitoring of polycyclic aromatic hydrocarbons (PAHs) in ambient air as well as in living (indoor) and working environments in Africa from 2000 to 2018. This is important as PAHs are ubiquitous in the environment and are known to be potentially carcinogenic. Aspects of sampling such as collection media for particle bound and gaseous PAHs are discussed. The efficiency and basic quality assurance data of commonly employed extraction techniques for separating target PAHs from sampling media using conventional solvent-based and emerging solvent-free approaches were also evaluated. Polyurethane foam and quartz fiber filters are generally the most commonly used collection media for gaseous and particle bound PAHs, respectively. A wide range of total PAH concentrations in ambient air has been reported across the continent of Africa, with the highest levels found at sampling sites close to high density traffic and industrial areas. A rapidly increasing population, commercial and industrial development, poor urban transportation infrastructure and the use of low quality oil products were the main causes of high total gas and particulate PAH concentrations (1.6–103 μg/m3) in West African port cities such as Cotonou, Benin. With regards to indoor environments, gas phase PAHs were detected at the highest total concentrations in rural areas ranging from 1 to 43 μg/m3 in Burundi with naphthalene being the most prevalent. Firewood burning was the major emission source in most developing countries and resulted in benzo[a]pyrene concentrations above the European permissible risk level of 1 ng/m3.  相似文献   

12.
A new sampling method was developed to collect vapor-phase polycyclic aromatic compounds (PAHs) downstream of a diesel engine equipped with a diesel particulate filter (DPF). This configuration allowed us to collect separately the particulate phase, which was trapped inside the DPF, and the vapor phase, which was sampled downstream of the DPF. PAHs, which were not predominantly absorbed into the poor organic fraction of the diesel soot, but were rather physically sorbed on high energetic adsorption sites, should be extracted using very drastic extraction conditions Microwave-assisted extraction using solvent mixtures composed of pyridine and diethylamine were used to desorb particulate PAHs, and the total PAH amounts corresponded to a very low value, i.e., 8 μg g−1 or 0.24 μg km−1, with a predominance of low weight PAHs. For collection of the vapor phase, gas bubbling in an aqueous medium was preferred to conventional methods, e.g., trapping on solid sorbents, for several reasons: aqueous trapping allowed us to use a solid phase enrichment process (SPE) that permitted PAH sampling at the sub-picogram levels. Consequently, low volume sampling was possible even if the sampling duration was very short (20 min). Additionally, the amount of time saved for the analysis was considerable when coupling SPE to the analytical system (liquid chromatography with fluorimetric detection). Solvent consumption for the overall sampling and analytical processes was also drastically reduced. Experiments on a diesel engine showed that vapor phase samples collected downstream of the DPF contained all of the 15 target priority PAHs, even the heaviest ones. The total vapor-phase PAH amount was 6.88 μg N m−3 or 10.02 μg km−1, which showed that the gaseous fraction contains more PAHs than the particulate fraction. Partitioning coefficients (Kp) were estimated showing the predominance in the vapor phase of all the PAHs. However, the DPF technology effects a considerable decrease in the total PAH emission when compared to non-equipped diesel vehicles.  相似文献   

13.
A sampling method has been developed for the measurement for polycyclic aromatic hydrocarbons in ambient air by gas chromatography isotope dilution mass spectrometry. The method has been designed to measure the largest possible volatility range of PAHs including the abundant naphthalenes. Sample volumes were approx. 500 m3 in size at a sampling rate of approx. 18 m3/h. The sampler contained three sorption stages for the simultaneous capturing of particle bound and low and high volatile gaseous PAH, respectivley. Recoveries of sampling spikes were on average 90%. The detection limit was approx. 5 pg/m3 for the high boiling range PAH. Results obtained showed a quite steady profile for most PAH in background air in The Netherlands. Comparison of abundance ratios with literature data indicate that traffic exhausts are the major source for the PAH in the area.  相似文献   

14.
A rapid and very simple method for extracting polycyclic aromatic hydrocarbons (PAHs) from soils, sediments, and air particulate matter has been developed by coupling static subcritical water extraction with styrene-divinylbenzene (SDB-XC) extraction discs. Soil, water, and the SDB-XC disc are placed in a sealed extraction cell, heated to 250 degrees C for 15 to 60 min, cooled, and the PAHs recovered from the disc with acetone/methylene chloride. If the cells are mixed during heating, all PAHs with molecular weights from 128 to 276 are quantitatively (>90%) extracted and collected on the sorbent disc and are then recovered by shaking with acetone/methylene chloride. After water extraction, the sorbent discs can be stored in autosampler vials without loss of the PAHs, thus providing a convenient method of shipping PAH extracts from field sites to the analytical laboratory. The method gives good quantitative agreement with standard Soxhlet extraction, and with certified reference materials for PAH concentrations on soil, sediment (SRM 1944), and air particulate matter (SRM 1649a).  相似文献   

15.
Using gas chromatography-mass spectrometry, a new method was developed for the identification and the quantification of polycyclic aromatic hydrocarbons (PAHs) in plants. This method was particularly optimised for PAH analyses in marine plants such as the halophytic species, Salicornia fragilis Ball et Tutin. The saponification of samples and their clean up by Florisil solid-phase extraction succeeded in eliminating pigments and natural compounds, which may interfere with GC-MS analysis. Moreover, a good recovery of the PAHs studied was obtained with percentages ranging from 88 to 116%. Application to the determination of PAH in a wide range of coastal halophytic plants is presented and validated the efficiency, the accuracy and the reproducibility of this method.  相似文献   

16.
An analytical method was established for the simultaneous determination of 39 polycyclic aromatic hydrocarbons (PAHs) in air. The method was applied to a survey of gaseous and particulate PAHs in household indoor air. The survey was performed in 21 houses in the summer of 1999 and in 20 houses in the winter of 1999-2000 in Fuji, Japan. Thirty-eight PAHs were determined in indoor and outdoor air in the summer, and 39 PAHs were determined in indoor and outdoor air in the winter. The concentrations of gaseous PAHs in indoor air tended to be higher than those in outdoor air in the summer and winter. The concentrations of particulate PAHs in indoor air were the same as or lower than those in outdoor air in the summer and winter. PAH profiles, correlations between PAH concentrations, and multiple regression analysis were used to determine the factors affecting the indoor PAH concentrations. These results showed that gaseous PAHs in indoor air were primarily from indoor emission sources, especially during the summer, and that indoor particulate PAH concentrations were significantly influenced by outdoor air pollution.  相似文献   

17.
A method was proposed for estimating the total amount of organic substance at the air–water interface. The method combines sampling by the transfer of an organic film to the probe surface with the coulometric determination of the amount of oxygen consumed for the high-temperature oxidation of the sample in a solid-electrolyte analyzer. The effect of the composition of the film and the material of the probe on the transfer of model oil films under the conditions of fast withdrawal of the probe from water was studied. It was demonstrated that organic substance can be accumulated at the surface of the probe on multiple withdrawal.  相似文献   

18.
To assess PAH contamination state of Monastir Bay, surface sediments were collected and analysed for 17 selected parent PAHs by GC/MS. Sediments were sampled from five sites in wet and dry seasons. Total PAH concentrations were in the range of 25.6 to 576.8?ng/g d.wt in winter and 44.9–395.8?ng/g d.wt in summer. Comparison of results with Sediment Quality Guidelines suggested no eco-toxicological risk for benthic organisms. The use of molecular indices has shown that PAHs in surface sediments originate mainly from pyrolytic sources. Total PAH concentrations in surface sediments showed no significant correlations with organic matter content and pelite fraction. The analysis of spatial and seasonal variations of PAHs in surface sediments has demonstrated that final distribution of PAHs in surface sediments is mainly governed by hydrological conditions.  相似文献   

19.
The effect of dissolved humic acids on the recovery of PAHs from water samples has been investigated using a commercially available humic acid preparation as colloid model and a mixture containing the 16 EPA PAHs. The presence of humic acid reduced the extraction efficiency down to between 10 and 75%. An analytical protocol was therefore developed for the accurate determination of PAHs in the presence of humic acids based on isotope dilution mass spectrometry. The procedure compensates for losses due to sorption of PAHs and can be used for the determination of the total PAH concentration in water, i.e. dissolved PAHs plus PAHs adsorbed on colloids. To obtain reliable estimates it is essential to allow a certain time for equilibration between the isotope spike and the aqueous matrix which may vary between 5 and 24 h, in correlation with the water solubility of PAHs. The protocol allows one to recover the 16 PAHs studied at 94 to 105%. The expanded uncertainty of the measurements was 5–7% for all PAHs. Liquid–liquid extraction and solid-phase extraction in combination with the developed isotope dilution protocol performed equally well for the quantification of PAHs from water samples rich in colloidal material.   相似文献   

20.
A convenient precise method for producing standard dusts has been developed. Metal-containing particulate samples are generated by aspirating solutions containing metals or interest into an atomizer-burner employing an oxygen-acetylene flame. The particulates thus generated are collected by means of a miniature stack by conventional isokinetic sampling techniques. The particulate samples are deposited on filter tapes and are suitable for calibrating trace analytical methods. Particulate samples containing one or more metals, in any desired ratios of their concentrations, can be generated. Initial studies of particulate sizes indicate that the size range generated is in the respirable range, i.e.. 0.1-5 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号