首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 375 毫秒

1.  镁改性HZSM-5对Cu-ZnO-Al2O3/HZSM5-催化合成气直接N-甲醚反应的影响  
   毛东森 张斌 宋庆英 杨为民 陈庆龄《催化学报》,2005年第26卷第5期
   采用浸渍法制备了一系列MgO改性的HZSM-5分子筛,并以MgO/HZSM-5为甲醇脱水催化剂与Cu—ZnO-Al2O3甲醇合成催化剂组成双功能催化剂,在连续流动加压固定床反应器上考察了其对合成气直接制二甲醚反应的催化性能.结果表明,以适量MgO改性的HZSM-5分子筛组成的双功能催化剂上,二甲醚选择性可高达64.8%,CO2和烃类副产物的选择性分别为30.2%和0.4%;由未改性的HZSM-5分子筛组成的双功能催化剂上,二甲醚选择性仅为49.1%,CO2和烃类副产物的选择性则分别高达37.1%和9.3%.当MgO含量过高时,则CO转化率和二甲醚选择性均降低.根据实验结果,提出了甲醇在MgO/HZSM-5上脱水的反应机理.    

2.  分子筛改性对一步法合成二甲醚的影响  被引次数:5
   许庆利  李庭琛  张素平  任铮伟  颜涌捷《燃料化学学报》,2008年第36卷第1期
   采用浸渍法制备了MgO、CaO、ZnO改性的HZSM-5分子筛,并以改性HZSM-5为脱水剂与JC207甲醇合成催化剂组成双功能催化剂,在固定床反应器上考察了其对一步法合成二甲醚影响.结果表明,适量碱性氧化物的引入,引起分子筛表面的B酸中心(强酸中心)向L酸中心(弱酸中心)转变,而弱酸和中强酸中心是甲醇脱水生成二甲醚的活性中心,强酸中心会造成二甲醚进一步脱水生成烃类副产品,所以改性后产物中二氧化碳和烃类的选择性下降,二甲醚选择性升高.这种趋势在CaO/HZSM-5脱水剂上表现的更为明显.    

3.  磷改性HZSM-5分子筛的制备及其在合成气一步法制二甲醚反应中的应用  被引次数:4
   毛东森  张斌  杨为民  陈庆龄  卢冠忠《催化学报》,2006年第27卷第11期
    以磷酸为前驱体,采用浸渍法制备了一系列不同P2O5含量(分别为5%, 10%和15%)的磷改性HZSM-5分子筛(P2O5/HZSM-5), 并采用氨程序升温脱附和吡啶吸附红外光谱法研究了其酸性. 结果表明,随着P2O5含量的增大, P2O5/HZSM-5样品的酸量尤其是强Brnsted酸位的酸量逐渐减少. 以上述P2O5/HZSM-5分子筛为甲醇脱水催化剂与工业甲醇合成催化剂(Cu-ZnO-Al2O3)组成双功能催化剂,在连续流动加压固定床反应器上考察了其对合成气一步法制二甲醚反应的催化性能. 结果表明,以适量磷(10%P2O5)改性的HZSM-5分子筛作为甲醇脱水催化剂,可使产物中二氧化碳和烃类副产物的选择性分别由改性前的43.3%和3.0%下降至低于33%和0.1%, 从而使二甲醚的选择性由49.7%提高到63%以上. 当P2O5/HZSM-5中的磷含量(15%P2O5)过高时,产物中甲醇的选择性高达30%以上,表明反应所生成的中间产物甲醇无法有效地转化,从而使二甲醚的选择性和一氧化碳的转化率均大大降低.    

4.  Effects of silicon to aluminum ratio and crystal size of zeolite on catalytic properties of Cu-ZnO-Al2O3/HZSM-5 for the direct synthesis of dimethyl ether from syngas  
   MAO Dong-sen    XIA Jian-chao《燃料化学学报》,2012年第40卷第2期
   采用水热晶化法合成了硅铝比(SiO2/Al2O3)为60、120、200和晶粒粒径分别为1.00和0.25μm的HZSM-5分子筛,并以其为甲醇脱水活性组分与铜基甲醇合成活性组分(Cu-ZnO-Al2O3)组成双功能催化剂(Cu-ZnO-Al2O3/HZSM-5),在连续流动加压固定床反应器上考察了Cu-ZnO-Al2O3/HZSM-5对合成气直接制二甲醚反应的催化性能.结果表明,随着分子筛硅铝比的提高,二氧化碳副产物的生成量逐渐减少,从而使目的产物二甲醚的选择性逐渐增大.与常规分子筛相比,小晶粒分子筛的反应活性接近,但二氧化碳和烃类副产物的选择性较低.    

5.  氟硅酸铵改性对HMCM-22酸性及双功能催化剂催化合成二甲醚性能的影响  
   毛东森  夏建超  陈庆龄  卢冠忠《催化学报》,2008年第29卷第12期
   用氟硅酸铵对HMCM-22分子筛进行了改性处理,并采用氨程序升温脱附和吡啶吸附红外光谱法测定了其酸性.结果表明,随着氟硅酸铵处理温度的提高,HMCM-22分子筛的B酸和L酸中心的酸量均逐渐减少.以氟硅酸铵改性的HMCM-22分子筛为甲醇脱水活性组分与铜基甲醇合成活性组分(CuO-ZnO-Al2O3)组成双功能催化剂,在连续流动加压固定床反应器上考察了其对合成气直接制二甲醚反应的催化性能.结果表明,对HMCM-22分子筛在适当温度(45℃)下进行氟硅酸铵改性,可使反应产物中烃类和CO2副产物的选择性下降,使目的产物二甲醚的选择性显著升高.当氟硅酸铵处理温度过高(85℃)时,CO的转化率和二甲醚的选择性均大幅度降低。    

6.  分子筛硅铝比及晶粒粒径对 Cu-ZnO-Al2O3/HZSM-5催化剂直接合成二甲醚反应性能的影响  
   毛东森  夏建超《燃料化学学报》,2012年第40卷第2期
   采用水热晶化法合成了硅铝比(SiO2/Al2O3)为60、120、200和晶粒粒径分别为1.00和0.25 μm的HZSM-5分子筛,并以其为甲醇脱水活性组分与铜基甲醇合成活性组分(Cu-ZnO-Al2O3)组成双功能催化剂(Cu-ZnO-Al2O3/HZSM-5),在连续流动加压固定床反应器上考察了Cu-ZnO-Al2O3/HZSM-5对合成气直接制二甲醚反应的催化性能。结果表明,随着分子筛硅铝比的提高,二氧化碳副产物的生成量逐渐减少,从而使目的产物二甲醚的选择性逐渐增大。与常规分子筛相比,小晶粒分子筛的反应活性接近,但二氧化碳和烃类副产物的选择性较低。    

7.  分子筛硅/铝比对Cu-ZnO-Al2O3/HMCM-22催化合成二甲醚反应性能的影响  被引次数:2
   毛东森  夏建超  张斌  陈庆龄  卢冠忠《催化学报》,2008年第29卷第9期
   以六亚甲基亚胺为模板剂,采用动态水热晶化法合成了不同硅/铝比的HMCM-22分子筛,并以其为甲醇脱水活性组分与铜基甲醇合成活性组分(Cu-ZnO-Al2O3)组成双功能催化剂,在连续流动加压固定床微型反应器上考察了其对合成气直接制二甲醚反应的催化性能. 结果表明,随着HMCM-22分子筛硅/铝比的增大, CO转化率变化不大,但CO2和烃类副产物的生成量逐渐减少,从而导致目的产物二甲醚的选择性和收率均逐渐升高. 氨程序升温脱附和吡啶吸附红外光谱表征结果表明,随着分子筛硅/铝比的增大, HMCM-22分子筛的酸中心的数量逐渐减少.    

8.  氧化铝的改性及其在合成气直接制二甲醚反应中的应用  被引次数:5
   毛东森  杨为民  张斌  卢冠忠《催化学报》,2006年第27卷第6期
    采用浸渍法制备了经硼、磷和硫的含氧酸根阴离子改性的γ-Al2O3, 以其为甲醇脱水活性组分,与铜基甲醇合成活性组分CuO-ZnO-Al2O3组成双功能催化剂,并在连续流动加压固定床反应器上考察了催化剂对合成气直接制二甲醚反应的催化性能. 结果表明, SO2-4改性可以显著提高γ-Al2O3的甲醇脱水活性,从而提高产物中二甲醚的选择性和一氧化碳的转化率. 此外,还详细研究了SO2-4改性条件如SO2-4含量、焙烧温度及前驱物种类的影响. 结果表明,当SO2-4含量为10%, 焙烧温度为550 ℃时,二甲醚的选择性及一氧化碳的转化率最高; SO2-4前驱物的种类对其改性效果的影响很小.    

9.  直接合成二甲醚的新型双功能催化剂  
   葛庆杰  黄友梅  邱凤炎  张传卫《天然气化学杂志》,1999年第8卷第4期
   采用共沉淀沉积法制备的Cu-ZnO-ZrO2/HZSM-5系列双功能催化剂具有优异的从合成气亘接制二甲醚的催化性能。其中Mg-(Cu-ZnO-ZrO2)/V-HZSM-5表现出最佳的催化活性和选择性,CO转化率达91.4%,二甲醚选择性为84.6%。此外,Cu-ZnO-ZrO2/HZSM-5催化剂也表现出优良的CO2加氢性能,CO2转化率可达35%,二甲醚选择性为60.1%。    

10.  CO2加氢制备二甲醚CuO-ZnO-Al2O3/HZSM-5催化剂的研究  
   张雅静  邓据磊  张素娟  王康军  吴静《分子催化》,2013年第27卷第3期
   以无水乙醇为溶剂,草酸为沉淀剂,采用悬浮共沉淀法,一步合成CuO-ZnO-Al2O3/HZSM-5双功能催化剂.并研究了该催化剂在CO2加氢合成二甲醚反应中的催化性能,考察了CO2加氢合成甲醇组分(CuO-ZnO-Al2O3)与甲醇脱水组分(HZSM-5)配比对催化剂性能的影响以及催化剂的稳定性.结果表明,双功能催化剂加氢与脱水组分配比为8∶1时,对CO2加氢直接合成二甲醚有较高的催化性能:在固定床反应器中,温度为270℃,压力为3.0 MPa,空速为4 800 h-1的反应条件下,CO2的单程转化率达到29.8%,二甲醚的选择性和收率分别达到53.8%和16%.XRD、BET、TPR和NH3-TPD对催化剂结构表征结果表明,不同组分配比影响双功能复合催化剂中脱水组分的酸性和加氢组分的结晶度、晶粒尺寸、CuO的还原性.    

11.  助剂Mn对CO_2加氢制二甲醚CuO-ZnO-ZrO_2/HZSM-5催化剂的结构和性能影响  
   张雅静  李德豹  姜丹  张素娟  王康军  吴静《分子催化》,2014年第4期
   以无水乙醇为溶剂,草酸为沉淀剂,采用悬浮共沉淀法,一步合成Mn改性的CuO-ZnO-ZrO2/HZSM-5双功能催化剂.并研究了该催化剂在CO2加氢合成二甲醚反应中的催化性能,考察了助剂锰的添加量对催化剂性能的影响,并采用XRD、BET、TPR、NH3-TPD和XPS对催化剂结构进行表征.结果表明,双功能催化剂性能与助剂锰的添加量有密切联系,适量锰的加入可提供合适的表面酸性,提高二甲醚的选择性,降低副产物CO的选择性.表征结果表明,加入Mn可以促进CuO的分散,并降低CuO的还原温度,增加催化剂的比表面积,提高Cu+/Cu0比,从而能促进CO2的转化,有利于提高催化剂的活性.    

12.  氧化钙改性分子筛对一步法合成二甲醚的影响(英)  
   许庆利  李廷琛  颜涌捷《燃料化学学报》,2008年第36卷第2期
   采用浸渍法制备了一系列CaO改性的HZSM-5(Si/A1=38)分子筛,并以CaO/HZSM-5为脱水剂与JC207甲醇合成催化剂(靖江催化剂厂)按照一定的比例组成双功能催化剂,在固定床反应器上考察了其对一步法合成二甲醚的影响。XRD结果表明,CaO在HZSM-5上呈高度分散状态,没有发现新的物种生成。Pyridine-IR结果表明,CaO引入HZSM-5后,酸中心的类型和数量发生明显的变化,CaO的加入促使部分酸中心由B酸中心转变为L酸中心。NH3-TPD结果表明,随着CaO含量的增加,HZSM-5分子筛表面酸性较强的酸中心数目下降,总酸中心数目也下降,但酸性较强的酸中心下降较快。表明适量的CaO改性HZSM-5分子筛不是除去表面所有的酸中心,而是通过与表面强酸中心的作用,使其向弱酸和中强酸中心过渡,从而改变HZSM-5表面的酸强度分布,提高二甲醚的选择性。    

13.  CO2加氢合成二甲醚的催化剂的制备  
   张娜  马涛  宋丽娟  连丕勇《化学研究》,2008年第19卷第4期
   先采用均匀沉淀法制备出CuO—ZnO催化剂,然后以CuO—ZnO催化剂作为晶核采用水热合成法制备出CuO—ZnO/HZSM-5(氢型ZSM-5分子筛)复合催化剂.利用X射线衍射和氨程序升温脱附手段对复合催化剂进行表征,并应用于CO2催化加氢合成二甲醚的反应.研究结果表明,在相同的反应条件下,这种CuO—ZnO/HZSM-5复合催化剂与采用物理混合法制备出的复合催化剂相比具有更好的催化效果,不但提高了CO2的转化率、二甲醚的选择性以及二甲醚和甲醇的总选择性,同时还改善了催化剂的稳定性.    

14.  [CuO-ZnO-Al2O3]/[HZSM-5]核壳双功能催化剂的制备、结构及其CO2+H2直接合成二甲醚反应性能  
   杨晓艳  孙松  丁建军  张义  张曼曼  高琛  鲍骏《物理化学学报》,2012年第28卷第8期
   利用水热合成法制备了一系列不同晶化时间的核壳结构双功能催化剂[CuO-ZnO-Al2O3]/[HZSM-5],通过X射线衍射(XRD)、扫描电镜(SEM)和能量分散谱(EDS)对催化剂结构进行了表征,并考察了核壳催化剂CO2加氢直接合成二甲醚的反应性能。结果表明,通过水热合成法可在甲醇合成催化剂CuO-ZnO-Al2O3表面包覆一层完整的HZSM-5分子筛膜,形成核壳结构,并且调节晶化时间可以控制分子筛晶粒尺寸及膜厚。与物理混合法制备的传统双功能催化剂相比,核壳结构催化剂合成二甲醚的选择性显著提高,其中晶化时间为3d的催化剂反应性能最为理想,CO2转化率为38.9%,二甲醚选择性达到77.0%。    

15.  尿素燃烧法制备CuO-ZnO/HZSM-5及其催化CO2加氢合成二甲醚的性能  
   李春艳  张雅静  王康军  杜杰  王琦  吴静《分子催化》,2017年第31卷第4期
   以尿素为燃烧剂,先采用燃烧法制备CuO-ZnO催化剂,接着采用研磨法将其与HZSM-5分子筛均匀混合形成CuO-ZnO/HZSM-5双功能催化剂.采用固定床反应器,在反应温度260℃、压力3.0 MPa、空速1 500 h-1条件下,考察了不同Cu/Zn(摩尔比)催化剂在CO2加氢合成二甲醚反应中的催化性能.通过XRD、N2等温吸附脱附、H2-TPR、NH3-TPD对催化剂进行表征,研究了不同Cu/Zn对催化剂结构及表面酸性的影响.结果表明:当Cu∶Zn=6;4时,催化剂对CO2催化加氢直接合成二甲醚反应的催化活性和选择性最佳,CO2的转化率、DME的选择性分别为11.95%和28.74%,且在催化剂上具有更多的低温还原Cu和较强的酸中心,从而提高了CO2加氢活性和二甲醚的选择性.    

16.  改性HZSM-5催化剂上4-甲基联苯与甲醇的甲基化反应性能  被引次数:5
   郭新闻  王祥生  沈剑平  孙路  宋春山《催化学报》,2003年第24卷第5期
    采用浸渍法制备了一系列金属氧化物(MgO,CaO,SrO,BaO,ZnO,La2O3和CeO2)改性的HZSM-5催化剂,以4-甲基联苯与甲醇的烷基化为探针反应,在固定床反应器上考察了其催化性能.结果表明,在MgO改性的HZSM-5催化剂上,目的产物4,4′-二甲基联苯的选择性最高,可达80%,而在未改性的HZSM-5上仅为13%.金属氧化物改性对4,4′-二甲基联苯的选择性均有提高,其大小顺序为:MgO>SrO≈ZnO≈CaO≈La2O3>BaO>CeO2.另外,还详细研究了MgO改性条件(如MgO浸渍量,改性剂的阴离子种类,改性方法)的影响.结果表明,MgO浸渍量为5.6%时较为合适.    

17.  SiO2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能  被引次数:10
   王继元  曾崇余  吴昌子《燃料化学学报》,2006年第34卷第2期
   以廉价的硅酸钠为硅源,碳酸钠为沉淀剂,采用共沉淀沉积法制备了SiO2改性的Cu-ZnO/HZSM-5催化剂,用XRD、SEM、H2-TPR、XPS等手段进行了表征,考察了对CO2加氢合成二甲醚的催化活性。结果表明,SiO2促进了催化剂前驱体的分散,延缓了焙烧后催化剂晶粒的长大和颗粒的团聚。SiO2改性的同时影响了CuO的分布状态及还原过程。1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂,用于CO2加氢合成二甲醚,CO2转化率和二甲醚的收率达28.53%和16.34%,与未经改性的Cu-ZnO/HZSM-5相比,CO2转化率和二甲醚收率分别提高了20%和34%;继续增大Si02用量,催化剂的活性反而降低。XPS和AES表征表明,1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂中,Cu^0是甲醇合成的活性中心,锌以ZnO的形式存在。    

18.  含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚(英文)  
   王琰  王文丽  陈月仙  郑家军  李瑞丰《燃料化学学报》,2013年第7期
   以Beta分子筛为核、Y型分子筛为壳层的多级孔复合分子筛(BFZ)作为甲醇脱水催化剂用于固定床中合成气一步法制备二甲醚,并与纯Y型分子筛进行了比较,研究了二甲醚合成催化反应活性与甲醇脱水催化剂孔道结构和酸性之间的关系。结果表明,复合分子筛HBFZ具有中等强度的酸性和中孔孔道结构,有利于提高合成气制备二甲醚的催化反应活性。二甲醚直接合成催化剂由工业CuO/ZnO/Al2O3催化剂(CZA)与分子筛(HBFZ、HY)采用机械混合方法制备;催化评价结果显示,CZA/HBFZ比CZA/HY具有更优的催化活性和稳定性。在250℃,5.0 MPa和1 500 h-1的反应条件下,CZA/HBFZ催化剂上CO的转化率和DME的选择性分别达到94.2%和67.9%。    

19.  合成气一步法制二甲醚的动力学研究  
   江大好  费金华  张一平  郑小明《浙江大学学报(理学版)》,2003年第30卷第2期
   采用固定床积分反应器,研究了用浸渍法制备的CuO-ZnO/Y-zeolite双功能催化剂上CO加氢直接合成二甲醚的反应动力学,按一氧化碳加氢先合成甲醇,再由甲醇脱水生成二甲醚两步串联的反应机理,分别建立了动力学模型,并对该催化剂对甲醇合成及甲醇脱水的机理作了探讨。模型的计算值和实验值能较好吻合,两步反应的表观活化能分别为27.98kJ/mol和30.62kJ/mol。    

20.  助剂SiO2对CO2加氢制二甲醚催化剂Cu-ZnO/HZSM-5性能的影响  被引次数:7
   王继元  曾崇余  吴昌子《催化学报》,2006年第27卷第10期
    考察了助剂SiO2对CO2加氢合成二甲醚催化剂Cu-ZnO/HZSM-5性能的影响,并用X射线衍射、程序升温还原和X射线光电子能谱等手段对催化剂进行了表征. 结果表明,加入少量的SiO2即可显著提高CO2的转化率、二甲醚的选择性以及二甲醚和甲醇的总选择性,并降低副产物CO的选择性,同时改善催化剂的稳定性; 但SiO2加入量大时,催化活性反而降低. SiO2的存在可使焙烧后催化剂的晶型结构发生改变,促进CuO和ZnO的分散,并提高CuO的还原温度. SiO2的加入抑制了反应过程中催化剂上Cu0和ZnO晶粒的长大,对活性物种Cu0有稳定作用,从而有利于提高催化剂的活性和稳定性.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号