首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The complex formation reactions of poly(vinyl ether of diethylene glycol) as well as vinyl ether of diethylene glycol–vinyl butyl ether copolymers with poly(acrylic acid) have been studied in aqueous and alcohol solutions. The formation of interpolymer complexes which were stabilized by hydrogen bonds was shown. The effects of molecular weight of poly(acrylic acid) and the nature of the nonionic polymer on the composition and stability of interpolymer complexes were clarified. The critical pH values of complexation were determined for different systems with various molecular weights and hydrophobic–hydrophilic balances. The stability of the interpolymer complexes formed in aqueous and alcohol solutions with respect to dimethylformamide addition was evaluated. The role of hydrophobic interactions and the presence of active groups on stability of the interpolymer complexes is discussed. Received: 23 July 2001 Accepted: 27 September 2001  相似文献   

2.
A new class of water-soluble polypyrroles (PPy) has been developed. This was accomplished by oxidative matrix polymerization of pyrrole (Py) monomer with Ce(IV) in the presence of poly(acrylic acid) (PAA), poly(vinyl pyrrolidone) (PVP), and copolymers (CP) of vinyl pyrrolidone(VP) with acrylic acid (AA) [VP/AA; 25/75 (CP1), 50/50 (CP2), 75/25 (CP3)]. The soluble and insoluble interpolymer complexes were observed according to the nature (and conformation) of polymers in mixture, the ratio of components, and the pH of solutions. The role of PAA, PVP, CP, Py, and Ce(IV) concentrations, the order of component addition, and the pH of the solutions were investigated. The evidence and structural reasons for the formation of soluble interpolymer complexes of PPy with different polymers are discussed. It is proposed that the compactization of the polymer matrix as well as the disturbance of the regularity of reactive groups on the polymer chain decreases the possibility of formation of soluble interpolymer complexes. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1255–1263, 1997  相似文献   

3.
The formation of stoichiometric interpolymer complexes (IPCs) between the poly(vinyl ether) of ethyleneglycol and the copolymer of acrylic acid–butyl vinyl ether, between copolymers of vinyl ether of ethyleneglycol–butyl vinyl ether, and the copolymer of acrylic acid–vinylbutyl ether is demonstrated by conductimetric, potentiometric, viscometric and spectroturbidimetric methods in aqueous solution. The swelling/deswelling behavior of composite films derived from the IPC has been studied in water, alcohol and water–alcohol mixtures, depending on various factors. The formation of polyelectrolyte complexes (PECs) between the copolymer of acrylic acid–vinyl butyl ether and poly(vinyl ether of monoethanolamine) on a dimeric interface of water–butanol has been studied by the potentiometric method. The kinetics of PEC formation on a dimeric interface was measured and the activation energy of this process was calculated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In the present work the complexation between polyvinyl ether of diethylene glycol and polyacrylic acid of different molecular weights has been studied in aqueous and isopropanol solutions. It was found that the polyacrylic acid with molecular weight 2000 does not form interpolymer complexes. The stability of polycomplexes in respect to addition of different solvents was evaluated. It was shown that depending on the nature of polymers the interpolymer complexes may be more or less stable in aqueous solutions than in organic ones.  相似文献   

5.
Novel water‐soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2‐hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH‐ and temperature and this property may be easily adjusted regulating the strength of interaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 195–204, 2006  相似文献   

6.
Abstract

Selective interpolymer complexation has been studied between methacrylic acid-methacrylamide copolymer and some complementary polymers such as poly(methacrylamide), poly(vinyl pyrrolidone), and poly(ethylene oxide). The relative order of complexation ability of the various nonionic polymers has been interpreted on the basis of the nature of interactions between different units of polymers. Configurational environment and neighboring group influences seem to affect interpolymer complex formation.  相似文献   

7.
Photophysical properties of the pyrene chromophore covalently bound to poly(acrylic acid) were used to investigate the interactions of a pyrene substituted poly(acrylic acid) (1) with poly(vinyl amine hydrochloride) (PVAm), poly(1-aminoacrylic acid) (PDA), and poly(1-acetylaminoacrylic acid) (PADA) in aqueous solutions. A number of photophysical parameters were obtained from fluorescence emission and excitation spectra, the deconvolution of decay curves for pyrene monomer, and excited state complex fluorescence and the quenching of pyrene monomer fluorescence by nitromethane in polymer solutions. These photophysical parameters were considered to reflect the inter- and intrapolymer interactions in solutions of 1 , PVAm, PDA, and PADA. The formation of interpolymer complexes between 1 and PVAm was noticed at low (< 4) as well as high (> 8) values, whereas PDA and 1 formed interpolymer complexes at low pH only. No interpolymer complex formation was detected in solutions of 1 and PADA under low or high pH conditions. The structures of interpolymer complexes formed between 1 and PVAm under low and high pH conditions were found to be determined by the conformation of 1 . There were significant differences in the interpolymer interactions of 1 and PDA in comparison to those of 1 and PVAm; in particular, the fluorescence from the excited state complex was enhanced in solutions of 1 and PVAm but quenched in solutions of 1 and PDA. The investigations of terpolymer solutions of 1 , PVAm, and PADA indicated that the nature of interpolymer complexes formed in terpolymer solutions was determined by Coulombic interactions of the amino and carboxylic group containing polymers.  相似文献   

8.
The complex formation between vinyl ether of poly(ethylene glycol‐co‐vinyl butyl ether) with poly(acrylic acid) has been considered in aqueous and isopropanol solutions. The effect of copolymer composition on the complex formation process was clarified. It has been shown that the incorporation of hydrophobic fragments into macromolecules enhances the hydrophobic stabilization of polycomplexes in aqueous solutions. In organic media this effect disappears. The stability of polycomplexes formed both in aqueous and in organic solutions in respect to the addition of dimethylformamide has been studied.  相似文献   

9.
Miscibility of cellulose acetate with vinyl polymers   总被引:2,自引:0,他引:2  
Binary blend films of cellulose acetate (CA) with flexible syntheticpolymers including poly(vinyl acetate) (PVAc), poly(N-vinyl pyrrolidone) (PVP),and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] were preparedfrommixed polymer solutions by solvent evaporation. Thermal analysis by DSC showedthat CA of any degree of substitution (DS) was not miscible with PVAc, but CAwith DS less than 2.8 was miscible with PVP to form homogeneous blends. Thestate of mixing in CA/P(VP-co-VAc) blends was affected not only by the DS of CAbut also by the VP/VAc copolymer composition. As far as CAs of DS<2.8 andP(VP-co-VAc)s with VP contents more than ca. 25 mol% were used,theCA/copolymer blends mostly showed a miscible behaviour irrespective of themixing ratio. FT-IR measurements for the miscible blends of CA/PVP andCA/P(VP-co-VAc) revealed the presence of hydrogen-bonding interactions betweenresidual hydroxyls of CA and carbonyls of N-vinyl pyrrolidone units, which maybe assumed to largely contribute to the good miscibility.  相似文献   

10.
Interpolymer complex formation has been studied between methacrylic acid–methacrylamide copolymer and poly(vinyl pyrrolidone) in acetone–water mixtures of different compositions. At a specific composition of the solvent (e.g., 70% water + 30% acetone by volume), the intrinsic viscosity of the copolymer and the reduced viscosity of 1:1 interpolymer complex had minimum values. Preferential solvation coefficients (λ/C) have been calculated for the various compositions of the solvent mixtures. An excellent coincidence could be obtained between the maximum (λ/C) and the minimum in the viscosity of the polymer solutions. Interpretations have been sought in terms of conformational change of the copolymer at the specific composition of the solvent mixture.  相似文献   

11.
Composite proton-conducting membranes in the form of interpolymer films are prepared in an aqueous medium from sulfo-acid-modified poly(ethylene glycol vinyl glycidyl ether) and poly(vinyl alcohol). The initial poly(hydroxysulfo acid) is synthesized through the radical polymerization of ethylene glycol vinyl glycidyl ether followed by modification with sodium sulfite via epoxy groups and treatment with a cationite in the H form. The proton-conducting membranes feature improved thermal stability (200–250°C), a breaking strength of 1.0–8.9 MPa, elasticity (a relative elongation at break of 1.0–8.2%), chemical resistance, and specific proton conductivity attaining 10?1 S/cm after doping with orthophosphoric acid.  相似文献   

12.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

13.
Amphiphilic random copolymers based on vinyl ether of ethylene glycol and vinyl butyl ether as well as their polycomplexes with poly(acrylic acid) were studied as polymeric reagents for the stabilization of water/n‐hexane emulsions. The emulsion stability strongly depended on the content of vinyl butyl ether in the copolymers as well as their concentration in solution. The more hydrophobic copolymers stabilized emulsions more efficiently. An increase in the temperature and the addition of inorganic salts reduced the emulsion lifetime. The formation of interpolymer complexes between the copolymers and poly(acrylic acid) significantly influenced the stability of the emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2625–2632, 2004  相似文献   

14.
Advantages of interpolymer complexes for use as amphiphilic protectors of nanoparticles during the formation and stabilization of sols are considered. The effects of the ratio of poly(acrylic acid) and poly(ethylene glycol) and the molecular mass of poly(ethylene glycol) on the mean size and size distribution of copper nanoparticles in sols formed via the reduction of divalent copper ions in mixed aqueous solutions of these polymers are investigated. It is shown that sols of metal nanoparticles with small sizes and narrow size distributions are formed even when poly(ethylene glycols) with chain lengths below the “critical” chain length and a small PEG-to-PAA base-molar ratio are used. This is evidence for efficient protection of the formed copper nanoparticles by the interpolymer complex PEG-PAA under conditions of its instability and for self-organization of oligomeric PEG chains in complex macromolecular shields of nanoparticles.  相似文献   

15.
It is shown that nonstoichiometric interpolymer complexes composed of high-molecular-mass poly( acrylic acid) and PEG of various molecular masses are more efficient stabilizers of copper sols than each component of the complex taken separately. This conclusion is based on comparison of dimensions of copper nanoparticles in sols formed via reduction of copper(II) ions in solutions of poly (acrylic acid), PEG, and their blends and on the enhanced stability of sols protected by the interpolymer complex against aggregation and oxidation of metal particles. Much shorter PEG chains than those necessary for formation of corresponding interpolymer complexes in the absence of nanoparticles can be involved in formation of tertiary complexes including copper nanoparticles, poly(acrylic acid), and PEG. On the basis of the experimental data, it is inferred that the mutual enhancement of the complexing behavior of components occurs in tertiary complexes containing copper nanoparticles and both polymers.  相似文献   

16.
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.  相似文献   

17.
The effect of pH on the complexation of poly(acrylic acid) with poly(vinyl alcohol) in aqueous solution, the miscibility of these polymers in the solid state and the possibility for crosslinking the blends using gamma radiation has been studied. It is demonstrated that the complexation ability of poly(vinyl alcohol) with respect to poly(acrylic acid) is relatively low in comparison with some other synthetic non-ionic polymers. The precipitation of interpolymer complexes was observed below the critical pH of complexation (pH(crit1)), which characterizes the transition between a compact hydrophobic polycomplex and an extended hydrophilic interpolymer associate. Films prepared by casting from aqueous solutions at different pH values exhibited a transition from miscibility to immiscibility at a certain critical pH, pH(crit2), above which hydrogen bonding is prevented. It is shown here that gamma radiation crosslinking of solid blends is efficient and only results in the formation of hydrogel films for blends prepared between pH(crit1) and pH(crit2). The yield of the gel fraction and the swelling properties of the films depended on the absorbed radiation dose and the polymer ratio. [Diagram: see text] SEM image of an equimolar PAA-PVA blend cast from a pH 4.6 solution.  相似文献   

18.
The effect of pH on the complex formation between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) has been studied in aqueous solutions by turbidimetric and fluorescent methods. It was shown that the formation of insoluble interpolymer complexes is observed below a certain critical pH of complexation (pH(crit1)). The formation of hydrophilic interpolymer associates is possible above pH(crit1) and below a certain pH(crit2). The effects of polymer concentrations in solution and PEO molecular weight as well as inorganic salt addition on these critical pH values were studied. The polymeric films based on blends of PAA and PEO were prepared by casting from aqueous solutions with different pHs. These films were characterized by light transmittance measurements and differential scanning calorimetry. The existence of the pH value above which the polymers form an immiscible blend was demonstrated. The transitions between the interpolymer complex, miscible blend, and immiscible blend caused by pH changes are discussed. The recommendations for preparation of homogeneous miscible films based on compositions of poly(carboxylic acids) and various nonionic water-soluble polymers are presented.  相似文献   

19.
Binary blends and pseudo complexes of cellulose acetate (CA) with vinyl polymers containing N-vinyl pyrrolidone (VP) units, poly(N-vinyl pyrrolidone) (PVP) and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)], were prepared, respectively, by casting from mixed polymer solutions in N,N-dimethylformamide as good solvent and by spontaneous co-precipitation from solutions in tetrahydrofuran as comparatively poor solvent. The scale of miscibility and intermolecular interaction were examined for the blends and complexes by solid-state 13C-NMR spectroscopy. It was revealed that the formation of complexes was due to a higher frequency of hydrogen-bonding interactions between the residual hydroxyl groups of CA and the carbonyl groups of VP residues in the vinyl polymer component. From measurements of CP/MAS spectra and proton spin-lattice relaxation times (TH) in the NMR study, the existence of the hydrogen-bonding interaction was also confirmed for the miscible blends and the homogeneity of the mixing was estimated to be substantially on a scale within a few nanometers.  相似文献   

20.
Complexes formed from poly(acrylic acid) and poly(2-hydroxyethyl acrylate) were studied in aqueous solutions by viscometric, turbidimetric, FTIR spectroscopic, and thermogravimetric analysis methods. The formation of interpolymer complexes stabilized by hydrogen bonds was observed. It was found that the compositions of these interpolymer complexes are strongly dependent on the concentration of polymers, the order of mixing the solutions, and the pH. It was demonstrated that the complexation ability of poly(2-hydroxyethyl acrylate) is relatively low compared to other known nonionic water-soluble polymers. However, it can be significantly increased via hydrophobic modification of the poly(acrylic acid) using cetyl pyridinium bromide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号