首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Activation of the extra cellular signal regulated kinase (ERK) pathway is involved in both proliferation and growth arrest of cells depending on intensity and duration of stimuli. In this study, we have elucidated differential regulation of the zinc-stimulated p21(CiP/WAF1) and cyclin D1 activation by inhibition of phosphoinositide 3-kinase (PI3K). In HT-29 colorectal cancer cells, the ERK activities were increased by zinc, which was accompanied by the induction of p21(Cip/WAF1) and cyclin D1. However, in the HT-29 cells pre-treated with PI3K inhibitor, LY294002, zinc induced further the p21(CiP/WAF) induction whereas abrogated cyclin D1 induction. In addition, the induction of p21(Cip/WAF1) expression completely inhibited the incorporation of bromodeoxyuridine (BrdU) into the nucleus, indicating that p21(CiP/WAF1) is an important indicator for ERK-dependent growth arrest. These studies suggest presence of an inter-related regulatory mechanism of cell proliferation by ERK and PI3K pathways.  相似文献   

2.
3.
4.
p21Cip/WAF1, an important regulator of cell proliferation, is induced by both p53- and extracellular signal regulated kinase (ERK) pathways. The induction of p21Cip/WAF1 occurs by prolonged activation of the ERKs caused by extracellular stimuli, such as zinc. However, not all the cells appeared to respond to ERK pathway dependent p21Cip/WAF1 induction. Here we investigated the cause of such difference using colorectal cancer cells. p21Cip/WAF1 induction and concomitant reduction of bromodeoxyuridine (BrdU) incorporation were observed by zinc treatment within HT-29 and DLD-1. However, HCT-116 cells with high endogenous p21Cip/WAF1 levels did not show any additional increment of p21Cip/WAF1 levels by zinc treatment and did maintain high BrdU incorporation level. The p21Cip/WAF1 induction by zinc depended upon prolonged activation of extracellular signal regulated kinase (ERK) was not observed in HCT-116 cells. The percentage of BrdU positive cells was 50% higher in p21Cip/WAF1 -/- HCT-116 cells compared to p21Cip/WAF1 +/+ HCT- 116 cells, and no cells induced p21Cip/WAF1 incorporated BrdU in its nucleus, yet confirming the importance of p21Cip/WAF1 induction in anti- proliferation. These results again support that p21Cip/WAF1 induction is a determinant in the regulation of colonic proliferation by the ERK pathway.  相似文献   

5.
6.
Angiotensin II is a major effector molecule in the development of cardiovascular disease. In vascular smooth muscle cells (VSMCs), angiotensin II promotes cellular proliferation and extracellular matrix accumulation through the upregulation of plasminogen activator inhibitor-1 (PAI-1) expression. Previously, we demonstrated that small heterodimer partner (SHP) represses PAI-1 expression in the liver through the inhibition of TGF-β signaling pathways. Here, we investigated whether SHP inhibited angiotensin II-stimulated PAI-1 expression in VSMCs. Adenovirus-mediated overexpression of SHP (Ad-SHP) in VSMCs inhibited angiotensin II- and TGF-β-stimulated PAI-1 expression. Ad-SHP also inhibited angiotensin II-, TGF-β- and Smad3-stimulated PAI-1 promoter activity, and angiotensin II-stimulated AP-1 activity. The level of PAI-1 expression was significantly higher in VSMCs of SHP-/- mice than wild type mice. Moreover, loss of SHP increased PAI-1 mRNA expression after angiotensin II treatment. These results suggest that SHP inhibits PAI-1 expression in VSMCs through the suppression of TGF-β/Smad3 and AP-1 activity. Thus, agents that target the induction of SHP expression in VSMCs might help prevent the development and progression of atherosclerosis.  相似文献   

7.
Cell cycle regulating proteins are known to have close relation with the proliferation of the mammalian cells. In injured liver, the number of HSCs is increased from proliferation. However, the expression of cell cycle proteins of HSCs during proliferation remains unevaluated. Therefore, cell cycle protein profiles of HSCs were studied in dimethyl-nitrosamine (DMN)-induced rat liver fibrosis model. Sprague-Dawley rats were intraperitoneally injected of DMN and the animals were sacrificed every week up to 4 weeks. HSCs were separated and the number of the cells in S phase was counted to evaluate the cell proliferation by flow cytometry. The expression of cyclin A, cyclin B, cyclin D1, cdk2, cdk4, cdc2, proliferating cell nuclear antigen (PCNA), p21(Cip/WAF1), and p27 was examined with immunoblotting analysis. Portion of S-phase cells peaked 7days after DMN injection. At that time, cyclin A, and PCNA showed significant increase in HSCs compared to untreated HSCs (114% and 116%, respectively, P<0.001). p21(Cip/WAF1) was decreased significantly in DMN-treated HSCs compared to control cells (88%, P<0.001). The increase of cyclin A, and PCNA and the decrease of p21(Cip/WAF1) seem to play important roles in the proliferation of HSCs during the early period of DMN treatment.  相似文献   

8.
9.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

10.
TNF-alpha plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between the two molecules are suggested. TNF-alpha has been known to downregulate PTEN via NF-kappaB pathway in the human colon cell line, HT-29. However, here we show the opposite finding that TNF-alpha upregulates PTEN via activation of NF-kappaB in human leukemic cells. TNF-alpha increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of NF-kappaB with p65 antisense phosphorothioate oligonucleotide or pyrrolidine dithiocarbamate. We found that TNF-alpha activated the NF-kappaB pathways, evidenced by the translocation of p65 to the nucleus in TNF-alpha-treated cells. We conclude that TNF-alpha induces upregulation of PTEN expression through NF-kappaB activation in human leukemic cells.  相似文献   

11.
The aquaporins constitute a family of homologous intrinsic membrane proteins that function as highly selective water channels and are highly expressed in tissues where rapid water movement across the cell membrane is required. Molecular mechanism of water transport through the plasma membrane of skeletal muscle is still not clear. This study was designed to identify aquaporin subtypes and their expression regulation in C2C12 cells, a mouse myoblastic cell line. RT-PCR, immunohistochemistry and Western blot analysis revealed that C2C12 cells express AQP5. AQP5 expression was increased by induction of C2C12 differentiation. Exposure of C2C12 cells to hypertonic solutions induced an increase in AQP5 expression and p38 kinase activation. However, a p38 kinase inhibitor failed to inhibit hyperosmolar induction of AQP5 expression in C2C12 cells. These data indicate that skeletal muscle cells express AQP5 protein and its expression is regulated by differentiation and hypertonic stress.  相似文献   

12.
Bis (Bag-3, CAIR), a Bcl-2-interacting protein, promotes the anti-apoptotic activity of Bcl-2 and increased levels of Bis have been observed in several disease models. The involvement of Bcl-2 and some Bcl-2-binding proteins in differentiation has recently been reported. However, the relevance of Bis to cellular differentiation remains unknown. The findings herein show that Bis expression is up-regulated during the differentiation of HL-60 cells. To investigate the effect of Bis expression on differentiation, we established Bis-overexpressing HL-60 cells (HL-60-bis). HL-60-bis cells have a low nuclear: cytoplasmic ratio and indented nucleus in Wright- Giemsa staining, and an increased expression of CD11b in immunofluorescence study, indicating the promotion of differentiation. The overexpression of Bis also resulted in a retarded cell growth rate, accompanied by the accumulation of HL-60 cells at the G0/G1 phase of the cell cycle, which was sustained during the differentiation process. Western blot analysis revealed that the expression of p27, a representative inducer of cell cycle arrest at the G1 phase, was increased 2.5-fold in HL-60-bis cells compared to HL-60-neo cells. These results suggest that the Bis induced growth inhibition of HL-60 cells promotes G0/G1 phase arrest via up-regulation of p27, which seems to be a prerequisite for differentiation. Further studies will be required to define the exact roles of Bis on cellular differentiation more precisely.  相似文献   

13.
SC-560, a structural analogue of celecoxib, induces growth inhibition in a wide range of human cancer cells in a cyclooxygenase (COX)-independent manner. Since SC-560 suppresses the growth of cancer cells mainly by inducing cell cycle arrest, we sought to examine the role of p21CIP1, a cell cycle regulator protein, in the cellular response against SC-560 by using p21(+/+) and p21(-/-) isogenic HCT116 colon carcinoma cells. In HCT116 (p21(+/+)) cells, SC-560 dose-dependently induced growth inhibition and cell cycle arrest at the G1 phase without significant apoptosis induction. SC-560-induced cell cycle arrest was accompanied by upregulation of p21CIP1. However, the extent of SC-560-induced accumulation at the G1 phase was approximately equal in the p21(+/+) and the p21(-/-) cells. Nonetheless, the growth inhibition by SC-560 was increased in p21(-/-) cells than p21(+/+)cells. SC-560-induced reactive oxygen species (ROS) generation did not differ between p21(+/+) and p21(-/-) cells but the subsequent activation of apoptotic caspase cascade was more pronounced in p21(-/-) cells compared with p21(+/+) cells. These results suggest that p21CIP1 blocks the SC-560-induced apoptotic response of HCT116 cells. SC-560 combined with other therapy that can block p21 CIP1 expression or function may contribute to the effective treatment of colon cancer.  相似文献   

14.
15.
Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient’s survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study’s aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.  相似文献   

16.
17.
Dexamethasone converts pluripotent pancreatic AR42J cells into exocrine cells expressing digestive enzymes. In order to address molecular mechanism of this differentiation, we have investigated the role of mitogen-activated protein (MAP) kinase pathway and gene expressions of p21(waf1/cip1) and nuclear oncogenes (c-fos and c-myc) during AR42J cell differentiation. Dexamethasone markedly increased the intracellular and secreted amylase contents as well as its mRNA level. However, cell growth and DNA content were significantly decreased. With these phenotypic changes, AR42J cells induced transient mRNA expression of p21(waf1/cip1) gene, which reached maximal level by 6 h and then declined gradually toward basal state. In contrast to p21(waf1/cip1), c-fos gene expression was transiently inhibited by 6 h and then recovered to basal level by 24 h. Increased c-myc expression detected after 3 h, peaked by 12 h, and remained elevated during the rest of observation. Dexamethasone inhibited epidermal growth factor-induced phosphorylation of extracellular signal regulated kinase. Inhibition of MAP kinase pathway by PD98059 resulted in further elevation of the dexamethasone-induced amylase mRNA and p21(waf1/cip1) gene expression. These results suggest that p21(waf1/cip1) and nuclear oncogenes are involved in dexamethasone-induced differentiation and inhibition of MAP kinase pathway accelerates the conversion of undifferentiated AR42J cells into amylase-secreting exocrine cells.  相似文献   

18.
Shim JS  Lee J  Park HJ  Park SJ  Kwon HJ 《Chemistry & biology》2004,11(10):1455-1463
HBC (4-[3,5-Bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid) is a recently developed curcumin derivative which exhibits potent inhibitory activities against the proliferation of several tumor cell lines. In the present study, we identified Ca2+/calmodulin (Ca2+/CaM) as a direct target protein of HBC using phage display biopanning. Ca2+/CaM-expressing phages specifically bound to the immobilized HBC, and the binding was Ca2+ dependent. Moreover, flexible docking modeling demonstrated that HBC is compatible with the binding cavity for a known inhibitor, W7, in the C-terminal hydrophobic pocket of Ca2+/CaM. In biological systems, HBC induced prolonged phosphorylation of ERK1/2 and activated p21(WAF1) expression, resulting in the induction of G0/G1 cell cycle arrest in HCT15 colon cancer cells. These results suggest that HBC inhibits the cell cycle progression of colon cancer cells via antagonizing of Ca2+/CaM functions.  相似文献   

19.
SHP2 phosphatase is a positive transducer of growth factor and cytokine signaling. SHP2 is also a bona fide oncogene; gain-of-function SHP2 mutations leading to increased phosphatase activity cause Noonan syndrome, as well as multiple forms of leukemia and solid tumors. We report that tautomycetin (TTN), an immunosuppressor in organ transplantation, and its engineered analog TTN D-1 are potent SHP2 inhibitors. TTN and TTN D-1 block T?cell receptor-mediated tyrosine phosphorylation and ERK activation and gain-of-function mutant SHP2-induced hematopoietic progenitor hyperproliferation and monocytic differentiation. Crystal structure of the SHP2?TTN D-1 complex reveals that TTN D-1 occupies the SHP2 active site in a manner similar to that of a peptide substrate. Collectively, the data support the notion that SHP2 is a cellular target for TTN and provide a potential mechanism for the immunosuppressive activity of TTN. Moreover, the structure furnishes molecular insights upon which therapeutics targeting SHP2 can be developed on the basis of the TTN scaffold.  相似文献   

20.
Clinical studies have shown that tumor hypoxia is associated with invasive growth and metastasis and may be an important prognostic factor adversely influencing survival in patients with tumors. To investigate the mechanisms involved in hypoxia-induced invasive growth and metastasis, hypoxia-mediated urokinase plasmalogen activator receptor (uPAR) expression, cellular invasiveness, and mitogen activated protein kinase (MAPK) activation were measured in a prostate cancer cell line, PC3MLN4. The levels of uPAR expression and cellular invasiveness were increased in hypoxic cells. Hypoxia-induced cellular invasiveness was blocked by an anti-uPAR monoclonal antibody. Phosphorylations of ERK and p38 kinases were also more extensive in hypoxic cells than in normoxic cells. Hypoxia-induced uPAR up-regulation was inhibited by pre-treatments with a specific inhibitor of MEK, PD98059 and a specific inhibitor of p38 MAP kinase, SB203580. Cell growth also increased in hypoxic cells. From these results, hypoxia increased tumor cell invasion by up-regulating uPAR expression, which might be mediated through ERK and p38 kinase signaling pathways in PC3MLN4 prostate cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号