首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Naphtho[1,2‐b][1]benzothiophene‐6‐carboxylic acids, 6H‐benzo[b]naphtho[2,3‐d]thiopyran‐6‐ones and 6H‐benzo[b]naphtho[2,3‐d]pyran‐6‐ones were synthesized in one step by the photocyclization reaction of 3‐aryl‐2‐([1]benzothien‐3‐yl)propenoic acids. The photocyclization reaction did not occur when the 3‐aryl group contained the electron‐withdrawing nitro group. The assignment of the 1H and 13C nmr spectra of 6H‐benzo[b]naphtho[2,3‐d]thiopyran‐6‐one and 6H‐benzo[b]naphtho[2,3‐d]pyran‐6‐one by two‐dimensional nmr methods is described. The difference between the chemical shift values of H12 for these two compounds is attributed to different molecular geometries.  相似文献   

2.
The versatile enaminonitrile, 2‐cyano‐3‐(dimethylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐acrylamide ( 2 ), reacts with some C,O‐binucleophiles (acetylacetone and dimedone) in refluxing acetic acid to afford the pyranone 4 , the chromene 6 derivatives, and with C,N‐binucleophiles (2‐(benzothiazol‐2‐yl)acetonitrile and 2‐(1H‐benzimidazol‐2‐yl)acetonitrile) to afford the respective 1H‐pyrido[2,1‐b]benzothiazole 8 and pyrido[1,2‐a]benzimidazole 10 derivatives. Similar treatment of 2 with phenol, resorcinol, α‐naphthol and β‐naphthol in boiling acetic acid gave the coumarin derivatives 12 , 14 , 16 , and 18 , respectively. The utility of enaminonitrile 2 for the synthesis of 6H‐pyrano[3,2‐d]isoxazole 20 , pyrano[2,3‐c]pyrazole 22 , and pyrano[2,3‐d]pyrimidine 24 derivatives was also explored via its reaction with 3‐phenylisoxazol‐5(4H)‐one, 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, and barbituric acid, respectively. The mechanistic aspects for the formation of the new compounds were also discussed.  相似文献   

3.
A new series of benzo[g]thiazolo[2,3‐b]quinazolin‐4‐ium and benzo[g]benzo[4,5]thiazolo[2,3‐b]quinazolin‐14‐ium hydroxide derivatives have been synthesized by the one‐pot, three‐component reaction of aryl glyoxal monohydrates, 2‐hydroxy‐1,4‐naphthoquinone, and 2‐aminothiazole or 2‐aminobenzothiazole in the presence of triethylamine and p‐toluenesulfonic acid as organocatalysts in H2O/acetone (2:1) at room temperature. This method offers mild reaction conditions, excellent yields, easy workup, and readily accessible starting materials and catalysts.  相似文献   

4.
The synthesis of a polycyclic heterocyclic ring system compound, ethyl 7‐hydroxy‐4‐oxo‐2‐phenyl‐4,5‐dihydro‐3H‐benzo[6,7]cyclohepta[1,2‐d]pyrimidine‐6‐carboxylate was carried out by condensation of benzamidine on diethyl 5,9‐dihydroxy‐7H‐benzo[a]cycloheptene‐6,8‐dicarboxylate, after opening and then closure of the seven membered ring.  相似文献   

5.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

6.
Several new benzo[ij]pyrano[2,3‐b]quinolizine‐8‐ones 5 and 4H‐pyrano[2,3‐b]pyridine 8 derivatives were synthesized from 4‐hydroxyquinolines 1 . Reacting 3‐acetyl‐4‐hydroxy‐1‐phenyl‐1H‐quinoline‐2‐one with dimethylformamide dimethylacetal afforded 3‐(3‐Dimethylarnino‐acryloyl)‐4‐hydroxy‐1‐phenyl‐1H‐quinolin‐2‐one 9 . This reacted with hippuric acid and diethyl 3‐oxoglutarate to give 2H‐pyran‐2‐one 13 and pyranopyridoquinoline 17 respectively.  相似文献   

7.
Naphtho[2,1‐b]furan‐2‐yl)(8‐phenylpyrazolo[5,1‐c][1,2,4]triazin‐3‐yl)methanone, ([1,2,4]triazolo[3,4‐c][1,2,4]triazin‐6‐yl)(naphtho[2,1‐b]furan‐2‐yl)methanone, benzo[4,5]imidazo[2,1‐c][1,2,4]triazin‐3‐yl‐naphtho[2,1‐b]furan‐2‐yl‐methanone, 5‐(naphtho[2,1‐b]furan‐2‐yl)pyrazolo[1,5‐a]pyrimidine, 7‐(naphtho[2,1‐b]furan‐2‐yl)‐[1,2,4]triazolo[4,3‐a]pyrimidine, 2‐naphtho[2,1‐b]furan‐2‐yl‐benzo[4,5]imidazo[1,2‐a]pyrimidine, pyridine, and pyrazole derivatives are synthesized from sodium salt of 5‐hydroxy‐1‐naphtho[2,1‐b]furan‐2‐ylpropenone and various reagents. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthetic route whenever possible. J. Heterocyclic Chem., (2012).  相似文献   

8.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

9.
A simple and efficient synthesis of 4‐aryl‐3‐methyl‐1‐phenyl‐1H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,10‐diones has been accomplished by the one‐pot condensation reaction of 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐amine, aldehydes and 2‐hydroxynaphthalene‐1,4‐dione in water in the presence of diammonium hydrogen phosphate.  相似文献   

10.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

11.
A series of 2‐oxo‐2,5‐dihydro‐1H‐chromeno[4,3‐b]pyridine derivatives were obtained by using a one‐pot three component reaction of 2,2‐disubstituted chroman‐4‐one with aromatic aldehydes and 2‐cyanoacetamide in the presence of sodium hydroxide under solvent‐free conditions. Heating chromenopyridine derivatives with phosphoryl chloride gave the corresponding chloro derivatives. The reaction of the chloro derivatives with hydrazine hydrate afforded dihydrochromeno[4,3‐b]pyrazolo[4,3‐e]pyridines derivatives. Condensation of the dimethyl derivative compound with the aromatic aldehydes gave 8‐Arylideneamino‐6,6‐dimethyl‐10H‐chromeno[4,3‐b]pyrazolo[4,3‐e]pyridine.  相似文献   

12.
Diels‐Alder reaction of 2‐(E‐2‐nitroethenyl)‐1H‐pyrrole ( 2a ) with 1,4‐benzoquinone gave the desired benzo[e]indole‐6, 9(3H)‐dione ( 4a ) in 10% yield versus a 26% yield (lit. 86% [5]) of the known N‐methyl compound ( 4b ) from the N‐(or 1)‐methyl compound ( 2b ). Protection of the nitrogen of 2a with a phenylsul‐fonyl group ( 2c ) gave a 9% yield of the corresponding N‐(or 3)‐phenylsulfonyl compound ( 4c ). The reaction of 2b with 1,4‐naphthoquinone gave in 6% yield (lit. 64% [5]) the known 3‐methylnaphtho[2,3‐e]‐indole‐6, 9(3H)‐dione ( 6 ). The reaction of 2‐(E‐2‐nitroethenyl)furan ( 8a ) gave a small yield of the desired naphtho[2,1‐b]furan‐6, 9‐dione ( 9a ), recognized by comparing its NMR spectrum with that of 4b. The corresponding reaction of 2‐(E‐2‐nitroethenyl)thiophene ( 8b ) gave a 4% yield of naphtho[2,1‐ b ]thiophene‐6,9‐dione ( 9b ), previously prepared in 24% yield [12] in a three‐step procedure involving 2‐ethenylthiophene. Introducing an electron‐releasing 2‐methyl substituent into 8a and 8b gave 12a and 12b , which, upon reaction with 1,4‐benzoquinone, gave 2‐methylnaphtho[2,1‐b]furan‐6, 9‐dione ( 13a ) and its sulfur analog ( 13b ) in yields of 4 and 8%, respectively.  相似文献   

13.
A series of benzo[b]furan‐2(3H)‐ones (coumaran‐2‐ones) bearing a urea substructure, namely derivatives of 3‐(aminocarbonylamino)benzo[b]furan‐2(3H)‐one, was prepared for the first time. The accessibility of these compounds through an electrophilic α‐amidoalkylation approach of phenols (Tscherniac–Einhorn reaction) in the key step as well as the chemiluminescence (CL) properties of the desired compounds are strongly dependent on the substitution patterns at the urea moiety. Competing reaction pathways are discussed and an improved one pot synthetical approach of also general interest is presented. In conclusion, especially N,N‐dialkylaminocarbonylamino‐derivatives of benzo[b]furan‐2(3H)‐ones exhibit a strong flash like blue CL upon treatment with bases such as 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in the presence of oxygen or hydrogen peroxide. Comparative physico‐chemical investigations revealed that novel compounds outperform their urethane‐analogues in terms of CL‐intensity and the speed of the decay making them potentially useful as new tools for CL‐based applications on the short time scale.  相似文献   

14.
Photocyclization of 3‐chloro‐N‐(9‐phenanthryl)benzo[b]‐thiophene‐2‐carboxamide ( 3 ) and 3‐chloro‐N‐(9‐phenanthryl)‐naphtho[1,2‐b]thiophene‐2‐carboxamide ( 10 ) yielded dibenzo[f,h]benzothieno[2,3‐c]‐quinolin‐10(9H)‐one ( 4 ) and dibenzo[f,h]naphtho[2′,1′:4,5]thieno[2,3‐c]quinolin‐10(9H)‐one ( 11 ), respectively. Further elaboration of the lactams provided three novel unsubstituted new ring systems.  相似文献   

15.
Reaction of 2‐acyl‐6‐methylbenzo[b]furan‐3‐acetic acids and their derivatives such as amides and esters with hydrazine does not give expected 1‐alkyl‐5H‐benzofuro[2,3‐e]diazepin‐4‐ones ones but results in 2‐amino‐7‐methyl‐2H‐benzo[4,5]furo[2,3‐c]pyridin‐3‐ones or (3‐R‐6‐methylbenzo[b]furan‐2‐yl)alkyl ketone azines.  相似文献   

16.
A series of novel benzo[f]thiopyrano[3,4‐b]quinolin‐11(8H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and β‐naphthylamine in glacial acetic acid. This protocol features mild reaction conditions, high yields, and short reaction time.  相似文献   

17.
An efficient synthesis of 7‐alkyl‐6H,7H‐naphtho‐[10,20:5,6]pyrano[3,2‐c]chromen‐6‐ones by three‐component condensation reaction of β‐naphthol, aromatic aldehydes, and 4‐hydroxycoumarin catalyzed by 1‐methyl‐3‐(2‐(sulfooxy)ethyl)‐1H‐imidazol‐3‐ium chloride is reported in good to excellent yields and short reaction times.  相似文献   

18.
A concise and efficient base‐induced synthesis of stair‐shaped, 4‐methylthio‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 3 ) has been delineated by the reaction of 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) and methyl 2‐cyano‐3,3‐dimethylthioacrylate in DMSO using powdered KOH as a base at room temperature. Amination of 3 has been achieved by reaction with secondary amine in ethanol at reflux temperature to yield 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 4 ). Reaction of 3 with aryl methyl ketone ( 5 ) in DMSO at room temperature using powdered KOH as a base produced stair‐shaped 5‐aryl‐7,8‐dihydro‐1,4‐dioxa‐2,3‐dioxodinaphtho[1,2‐b,d]oxepine ( 6 ) in good yields. However, reaction of 6‐aryl‐2H‐pyran‐2‐one‐3‐carbonitrile ( 8 ) with 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) did not give similar product, but in lieu 4‐aryl‐5,6‐dihydronaphtho[1,2‐b]oxepino[4,5‐b]pyran‐2‐ylidene)acetonitrile ( 9 ) was isolated and characterized.  相似文献   

19.
3‐[(3‐Aminopropyl)amino]‐1‐oxo‐1H‐naphtho[2,1‐b]pyran‐2‐carbaldehyde ( 10 ) was synthesized by nucleophilic substitution reaction of 2‐(3‐dimethylamino)‐1‐oxo‐1H‐naphtho[2,1‐b]pyran‐2‐carbaldehyde ( 9 ) and the monoprotected propane‐1,3‐diamine. The reaction with the unprotected reagent led to the unexpected 1‐(2‐hydroxynaphthalen‐1‐yl)‐2‐(tetrahydropyrimidin‐2(1H)‐ylidene)ethanone ( 6 ). Extension of this reaction to chromone 16 gave 1‐(2‐hydroxy‐3‐isopropyl‐6‐methylphenyl)‐2‐(tetrahydropyrimidin‐2(1H)‐ylidene)ethanone ( 7 ). The X‐ray crystal structures of 6 and 7 were also determined.  相似文献   

20.
Two new structurally isomeric, 2‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[h]chromen‐2‐yl)‐1‐naphthol ( 1 ) and 3‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[g]chromen‐2‐yl)‐2‐naphthol ( 3 ) have been synthesized from 2‐acetyl‐1‐naphthol and ethyl‐3‐hydroxy‐2‐naphthoate, respectively, involving Grignard reaction, dehydration of the corresponding tertiary alcohols, and hetero Diels–Alder dimerization. The two benzochromenes ( 1 and 3 ) have been fully characterized by IR, NMR, and HRESIMS data. Their structures are further supported by crystallography of their corresponding acetates ( 2 and 4 ). J. Heterocyclic Chem., (2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号