首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

2.
A rapid, accurate and specific high‐performance liquid chromatography–tandem mass spectrometry method has been validated for the simultaneous determination of cefoperazone and sulbactam in a small volume sample for children. A Shim‐pack XR‐ODS C18 column with gradient elution of water (0.1% formic acid) and acetonitrile (0.1% formic acid) solution was used for separation at a flow rate of 0.3 mL/min. The calibration curves of two analytes in serum showed excellent linearity over the concentration ranges of 0.03–10 μg/mL for cefoperazone, and 0.01–3 μg/mL for sulbactam, respectively. This method involves simple sample preparation steps and was validated according to standard US Food and Drug Administration and European Medicines Agency guidelines in terms of selectivity, linearity, detection limits, matrix effects, accuracy, precision, recovery and stability. This assay can be easily implemented in clinical practice to determine concentrations of cefoperazone and sulbactam in children.  相似文献   

3.
A simple LC‐MS/MS method was developed and validated for quantitatively analyzing six classes of 26 abused drugs and metabolites in human urine: (1) illicit drugs; (2) opiates; (3) synthetic opioids; (4) sedative; (5) stimulants; and (6) γ‐aminobutyric acid analogs. All urine samples were diluted with a mixture of isotope‐labeled internal standards, hydrolyzed with β‐glucuronidase and directly injected in a gradient chromatographic run. The mobile phase was composed of 0.1% formic acid in water and 0.1% of formic acid in methanol. A 4.9 min run time using the multiplexing driver and ultra‐biphenyl column (50 × 2.1 mm, 5 µm, RESTEK) allowed all drugs to have sufficient resolution in a short elute time. The overlapping liquid chromatography runs and scheduled multiple reaction monitoring acquisition method resulted in a higher overall throughput for the system. The result was linear over the studied range (2–16,000 ng/mL) for all compounds with correlation coefficients r2 ≥ 0.995. The intra‐day and inter‐day precisions and accuracies were within 15% and recovery was between 83 and 115% for all analytes. Freeze–thaw stability for three cycles and long‐term stability (57 days, ?20°C) were established for all analytes. The cross‐validation between College of American Pathologists and in‐house was validated (0.06% ≤ bias ≤ 12.3%). The applicability of the method was examined by analyzing urine samples from chronic pain patients (n = 610). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We developed an analytical method using liquid–liquid extraction (LLE) and liquid chromatography–tandem mass spectrometry (LC‐MS/MS) to detect and quantify tebufenozide (TEB) and indoxacarb (IND) residues in animal and aquatic products (chicken muscle, milk, egg, eel, flatfish, and shrimp). The target compounds were extracted using 1% acetic acid (0.1% acetic acid for egg only) in acetonitrile and purified using n‐hexane. The analytes were separated on a Gemini‐NX C18 column using (a) distilled water with 0.1% formic acid and 5 mm ammonium acetate and (b) methanol with 0.1% formic acid as the mobile phase. All six‐point matrix‐matched calibration curves showed good linearity with coefficients of determination (R2) ≥0.9864 over a concentration range of 5–50 μg/kg. Intra‐ and inter‐day accuracy was expressed as the recovery rate at three spiking levels and ranged between 73.22 and 114.93% in all matrices, with a relative standard deviation (RSD, corresponding to precision) ≤13.87%. The limits of quantification (LOQ) of all target analytes ranged from 2 to 20 μg/kg, which were substantially lower than the maximum residue limits (MRLs) specified by the regulatory agencies of different countries. All samples were collected from different markets in Seoul, Republic of Korea, and tested negative for tebufenozide and indoxacarb residues. These results show that the method developed is robust and may be a promising tool to detect trace levels of the target analytes in animal products.  相似文献   

5.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

6.
A direct injection liquid chromatography–electrospray ionization–tandem mass spectrometric method (LC‐ESI‐MS/MS) was developed and validated for the rapid and simple determination of 13 phenylalkylamine derivatives. Eight deuterium‐labeled compounds were prepared for use as internal standards (ISs) to quantify the analytes. Urine samples mixed with ISs were centrifuged, filtered through 0.22 µm filters and then injected directly into the LC‐ESI‐MS/MS system. The mobile phase was composed of 0.2% formic acid and 2 mM ammonium formate in distilled water and 0.2% formic acid and 2 mM ammonium formate in acetonitrile. The analytical column was a Capcell Pak MG‐II C18 (150 × 2.0 mm i.d., 5 µm, Shiseido). Separation and detection of the analytes were accomplished within 10 min. The linear ranges were 5–750 ng/mL (ephedrine and fenfluramine), 10–750 ng/mL (3,4‐methylenedioxyamphetamine, phendimetrazine, methamphetamine, 3,4‐methylenedioxyethylamphetamine and benzphetamine), 20–750 ng/mL (norephedrine, amphetamine, phentermine and ketamine) and 30–1000 ng/mL (3,4‐methylenedioxymethamphetamine and norketamine), with determination coefficients, R2, ≥ 0.9967. The intra‐day and inter‐day precisions were within 19.1%. The intra‐day and inter‐day accuracies ranged from ?16.0 to 18.7%. The lower limits of quantification for all the analytes were lower than 26.5 ng/mL. The applicability of the method was examined by analyzing urine samples from drug abusers (n = 30). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

8.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and accurate HPLC‐MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid–liquid extraction using ethyl acetate and separated on a Kromasil 60‐5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile–water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01–5 ng/mL for dextromethorphan, 0.02–5 ng/mL for dextrorphan and 0.025–20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra‐ and inter‐day precisions were within 11% and accuracies were in the range of 92.9–102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The chemotherapeutic drug 5‐fluorouracil (5‐FU) is widely used for treating solid tumors. Response to 5‐FU treatment is variable with 10–30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6‐dihydrouracil (UH2), and analogously, 5‐FU into 5‐fluoro‐5,6‐dihydrouracil (5‐FUH2). Combined quantification of U and UH2 with 5‐FU and 5‐FUH2 may provide a pre‐therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography–tandem mass spectrometry assay for simultaneous quantification of U, UH2, 5‐FU and 5‐FUH2 in human plasma. Samples were prepared by liquid–liquid extraction with 10:1 ethyl acetate‐2‐propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC18 column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01–10 μm for U, 0.1–10 μm for UH2, 0.1–75 μm for 5‐FU and 0.75–75 μm for 5‐FUH2, covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5‐FU‐treated colorectal cancer patients. The present method merges the analysis of 5‐FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5‐FU‐based chemotherapy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Fat‐soluble vitamins play a pivotal role in the progression of atherosclerosis and the development of cardiovascular disease. Therefore, plasma monitoring of their concentrations may be useful in the diagnosis of these disorders as well as in the process of treatment. The study aimed to develop and validate an HPLC–MS/MS method for determination of retinol, α‐tocopherol, 25‐hydroxyvitamin D2 and 25‐hydroxyvitamin D3 in plasma of patients with cardiovascular disease. The analytes were separated on an HPLC Kinetex F5 column via gradient elution with water and methanol, both containing 0.1% (v/v) formic acid. Detection of the analytes was performed on a triple‐quadrupole MS with multiple reaction monitoring via electrospray ionization. The analytes were isolated from plasma samples with liquid–liquid extraction using hexane. Linearity of the analyte calibration curves was confirmed in the ranges 0.02–2 μg/mL for retinol, 0.5–20 μg/mL for α‐tocopherol, 5–100 ng/mL for 25‐hydroxyvitamin D2 and 2–100 ng/mL for 25‐hydroxyvitamin D3. Intra‐ and inter‐assay precision and accuracy of the method were satisfactory. Short‐ and long‐term stabilities of the analytes were determined. The HPLC‐MS/MS method was applied for the determination of the above fat‐soluble vitamin concentrations in patient plasma as potential markers of the cardiovascular disease progression.  相似文献   

14.
We describe here the fast LC‐MS/MS separation of a mixture of neurotransmitters consisting of dopamine, epinephrine, norepinephrine, 3,4‐dihydroxybenzylamine (DHBA), salsolinol, serotonin, and γ‐aminobutyric acid (GABA). The new UltiMate® 3000 Rapid Separation system (RSLC) was successfully coupled to the 4000 QTRAP mass spectrometer operating in multiple‐reaction monitoring (MRM) mode. The separation was attained using a 100 mm length, 2.2 μm particle size Acclaim column at a flow rate of 0.5 mL/min. The column back pressure was 350 bar, while the total run time including column re‐equilibration was 5.2 min. The peak resolution was minimally affected by the fast separation. The RSLC‐MRM separation was found to have a precision range based on peak area for 50 replicate runs of 2–5% CV for all analytes, and the reproducibility of the retention time for all analytes was found to range from 0–2% CV. The described method represents an almost seven times shorter analysis time of neurotransmitters using LC/MRM which is very useful in screening large quantities of biological samples for various neurotransmitters.  相似文献   

15.
A liquid chromatography–tandem mass spectrometric method for the simultaneous determination of 75 abuse drugs and metabolites, including 19 benzodiazepines, 19 amphetamines, two opiates, eight opioids, cocaine, lysergic acid diethylamide, zolpidem, three piperazines and 21 metabolites in human hair samples, was developed and validated. Ten‐milligram hair samples were decontaminated, pulverized using a ball mill, extracted with 1 mL of methanol spiked with 28 deuterated internal standards in an ultrasonic bath for 60 min at 50°C, and purified with Q‐sep dispersive solid‐phase extraction tubes. The purified extracts were evaporated to dryness and the residue was dissolved in 0.1 mL of 10% methanol. The 75 analytes were analyzed on an Acquity HSS T3 column using gradient elution of methanol and 0.1% formic acid and quantified in multiple reaction monitoring mode with positive electrospray ionization. Calibration curves were linear (r ≥ 0.9951) from the lower limit of quantitation (2–200 pg/mg depending on the drug) to 2000 pg/mg. The coefficients of variation and accuracy for intra‐ and inter‐assay analysis at three QC levels were 4.3–12.9% and 89.2–109.1%, respectively. The overall mean recovery ranged from 87.1 to 105.3%. This method was successfully applied to the analysis of 11 forensic hair samples obtained from drug abusers.  相似文献   

16.
Three liquid chromatography–tandem mass spectrometry (LC‐MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3‐methyl‐1‐p‐tolyl‐5‐pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid–methanol, isocratic 0.1% formic acid–methanol (90:10) and 0.02% formic acid–methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H]+ 175.1 → 133.0 and [M + H]+ 189.2 → 147.0 for edaravone and its IS, m/z [M ? H]? 124.1 → 80.0 and [M ? H]? 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co‐administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration–time curve, mean residence time, half‐life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A rapid, sensitive and selective liquid chromatography–tandem mass spectrometry method for the detection of tandospirone (TDS) and its active metabolite 1‐[2‐pyrimidyl]‐piperazine (1‐PP) in Sprague–Dawley rat plasma is described. It was employed in a pharmacokinetic study. These analytes and the internal standards were extracted from plasma using protein precipitation with acetonitrile, then separated on a CAPCELL PAK ADME C18 column using a mobile phase of acetonitrile and 5 mm ammonium formate acidified with formic acid (0.1%, v/v) at a total flow rate of 0.4 mL/min. The detection was performed with a tandem mass spectrometer equipped with an electrospray ionization source. The method was validated to quantify the concentration ranges of 1.000–500.0 ng/mL for TDS and 10.00–500.0 ng/mL for 1‐PP. Total time for each chromatograph was 3.0 min. The intra‐day precision was between 1.42 and 6.69% and the accuracy ranged from 95.74 to 110.18% for all analytes. Inter‐day precision and accuracy ranged from 2.47 to 6.02% and from 98.37 to 105.62%, respectively. The lower limits of quantification were 1.000 ng/mL for TDS and 10.00 ng/mL for 1‐PP. This method provided a fast, sensitive and selective analytical tool for quantification of tandospirone and its metabolite 1‐PP in plasma necessary for the pharmacokinetic investigation.  相似文献   

18.
In this work, a method was developed for the simultaneous determination of residual metoserpate, buquinolate and diclofenac in pork, milk, and eggs. Samples were extracted with 0.1% formic acid in acetonitrile, defatted with n‐hexane, and filtered prior to analysis using liquid chromatography–tandem mass spectrometry. The analytes were separated on a C18 column using 0.1% acetic acid and methanol as the mobile phase. The matrix‐matched calibration curves showed good linearity over a concentration range of 5–50 ng/g with coefficients of determination (R2) ≥0.991. The intra‐ and inter‐day accuracies (expressed as recovery percentage values) calculated using three spiking levels (5, 10, and 20 μg/kg) were 80–108.65 and 74.06–107.15%, respectively, and the precisions (expressed as relative standard deviation) were 2.86–13.67 and 0.05–11.74%, respectively, for the tested drugs determined in various matrices. The limits of quantification (1 and 2 μg/kg) were below the uniform residual level (0.01 mg/kg) set for compounds that have no specific maximum residue limit (MRL). The developed method was tested using market samples and none of the target analytes was detected in any of the samples. The validated method proved to be practicable for detection of the tested analytes in pork, milk, and eggs.  相似文献   

19.
A simple, rapid and high sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the determination of neostigmine in small‐volume beagle dog plasma was developed to assess the plasma pharmacokinetics of neostigmine. After protein precipitation in a Sirocco 96‐well filtration plate, the filtrate was directly injected into the LC‐MS/MS system. The analytes were separated on a Hanbon Hedera CN column (100 × 4.6 mm, 5 µm) with a mobile phase composed of methanol–water (60:40, v/v) and the water containing 0.01% formic acid at a flow rate of 0.6mL/min, with a split ratio of 1:1 flowing 300 μL into the mass spectrometer. The run time was 3 min. Detection was accomplished by electrospray ionization source in multiple reactions monitoring mode with the precursor‐to‐product ion transitions m/z 223.0 → 72.0 and 306.0 → 140.0 for neostigmine and anisodamine (internal standard), respectively. The method was sensitive with a lower limit of quantitation of 0.1 ng/mL, and good linearity in the range 0.1–100ng/mL for neostigmine (r ≥ 0.998). All the validation data, such as accuracy, intra‐run and inter‐run precision, were within the required limits. The method was successfully applied to pharmacokinetic study of neostigmine methylsulfate injection in beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A fully valid UHPLC–MS/MS method was developed for the determination of etoposide, gemcitabine, vinorelbine and their metabolites (etoposide catechol, 2′,2′‐difluorodeoxyuridine and 4‐O ‐deacetylvinorelbine) in human plasma. The multiple reaction monitoring mode was performed with an electrospray ionization interface operating in both the positive and negative ion modes per compound. The method required only 100 μL plasma with a one‐step simple de‐proteinization procedure, and a short run time of 7.5 min per sample. A Waters ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) provided chromatographic separation of analytes using a binary mobile phase gradient (A, 0.1% formic acid in acetonitrile, v /v; B, 0.1% formic acid in water, v /v). Linear coefficients of correlation were >0.995 for all analytes. The relative deviation of this method was <10% for intra‐ and inter‐day assays and the accuracy ranged between 86.35% and 113.44%. The mean extraction recovery and matrix effect of all the analytes were 62.07–105.46% and 93.67–105.87%, respectively. This method was successfully applied to clinical samples from patients with lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号