首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colorless single crystals of Sr[ReO4]2 were obtained from halide melts at 1123 K in open corundum crucibles. X-ray diffraction revealed that Sr[ReO4]2 crystallizes in the monoclinic space group P21/n with the lattice parameters a = 627.31(4) pm, b = 1004.56(7) pm, c = 1271.25(9) pm and β = 97.118(3)° for Z = 4. The crystal structure contains a unique Sr2+-cation site surrounded by eight crystallographically different oxygen atoms forming distorted bicapped trigonal prisms. All corners of these [SrO8]14– polyhedra (d(Sr–O) = 259–268 pm) are shared with tetrahedral meta-perrhenate units [ReO4] (d(Re–O) = 166–173 pm) formed from two crystallographically different Re7+ cations surrounded by four O2– anions each, building up the three-dimensional mosaic-like structure of Sr[ReO4]2. Single-crystal Raman data confirm the presence of two different kinds of symmetry-free meta-perrhenate units [ReO4] and match well with results known from literature.  相似文献   

2.
During the reaction of an aqueous solution of (H3O)2[B12H12] with Tl2CO3 anhydrous thallium(I) dodecahydro‐closo‐dodecaborate Tl2[B12H12] is obtained as colorless, spherical single crystals. It crystallizes in the cubic system with the centrosymmetric space group Fm$\bar{3}$ (a = 1074.23(8) pm, Z = 4) in an anti‐CaF2 type structure. Four quasi‐icosahedral [B12H12]2– anions (d(B–B) = 180–181 pm, d(B–H) = 111 pm) exhibit coordinative influence on each Tl+ cation and provide a twelvefold coordination in the shape of a cuboctahedron (d(Tl–H) = 296 pm). There is no observable stereochemical activity of the non‐bonding electron pairs (6s2 lone pairs) at the Tl+ cations. By neutralization of an aqueous solution of the acid (H3O)2[B12H12] with PbCO3 and after isothermic evaporation colorless, plate‐like single crystals of lead(II) dodecahydro‐closo‐dodecaborate hexahydrate Pb(H2O)3[B12H12] · 3H2O can be isolated. This compound crystallizes orthorhombically with the non‐centrosymmetric space group Pna21 (a = 1839.08(9), b = 1166.52(6), c = 717.27(4) pm, Z = 4). The crystal structure of Pb(H2O)3[B12H12] · 3H2O is characterized as a layer‐like arrangement. The Pb2+ cations are coordinated in first sphere by only three oxygen atoms from water molecules (d(Pb–O) = 247–248 pm). But a coordinative influence of the [B12H12]2– anions (d(B–B) = 173–181 pm, d(B–H) = 93–122 pm) on lead has to be stated, too, as three hydrogen atoms from three different hydroborate anions are attached to the Pb2+ cations (d(Pb–H) = 258–270 pm) completing their first‐sphere coordination number to six. These three oxygen and three hydrogen ligands are arranged as quite irregular polyhedron leaving enough space for a stereochemical lone‐pair activity (6sp) at each Pb2+ cation. Since additional intercalating water of hydration is present as well, both classical H–Oδ ··· +δH–O‐ and unconventional B–Hδ ··· +δH–O hydrogen bonds play a significant role in the stabilization of the entire crystal structure.  相似文献   

3.
4.
Synthesis and Crystal Structure of Cadmium Dodecahydro closo‐Dodecaborate Hexahydrate, Cd(H2O)6[B12H12] Through neutralization of the aqueous free acid (H3O)2[B12H12] with cadmium carbonate (CdCO3) and after isothermic evaporation of the resulting solution, colourless lath‐shaped single crystals of Cd(H2O)6[B12H12] are obtained. Cadmium dodecahydro closo‐dodecaborate hexahydrate crystallizes at room temperature in the monoclinic system (space group: C2/m) with the lattice constants a = 1413.42(9), b = 1439.57(9), c = 749.21(5) pm and β = 97.232(4)° (Z = 4). The crystal structure of Cd(H2O)6[B12H12] can be regarded as a monoclinic distortion variant of the CsCl‐type structure. Two crystallographically different [Cd(H2O)6]2+ octahedra (d(Cd–O) = 227–230 pm) are present which only differ in their relative orientation. The intramolecular bond lengths for the quasi‐icosahedral [B12H12]2? cluster anions range in the intervals usually found for dodecahydro closo‐dodecaborates (d(B–B) = 177–179 pm, d(B–H) = 103–116 pm). The hydrogen atoms of the [B12H12]2? clusters have no direct coordinative influence on the Cd2+ cations. Due to the fact that no “zeolitic” crystal water molecules are present, a stabilization of the lattice takes place mainly via the B–Hδ?···H–O hydrogen bonds.  相似文献   

5.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

6.
Colorless single crystals of Cd28‐MTB] · 3H2O · DMF ( 1 ) were prepared in DMF/H2O solution [ 1 : space group C2/c (no. 15) with a = 1821.30(6), b = 2175.08(6), c = 1269.87(4) pm, β = 129.684(1)°]. The connection between the methane‐p‐benzoate tetraanions (MTB4–) and the Cd2+ cations leads to a three‐dimensional framework with channels extending along [1 10] and [110] with openings of 670 pm × 360 pm. The channel‐like voids accommodate water molecules and N,N‐dimethylformamide (DMF) molecules not bound to Cd2+. Colorless single crystals of [Cd4(2,2′‐bipy)47‐MTB)2] · 7DMF ( 2 ) were prepared in DMF in the presence of 2,2′‐bipyridine [ 2 : space group P1 (no. 2) with a = 1224.84(4), b = 1418.85(5), c = 2033.49(4) pm, α = 85.831(2)°, β = 88.351(2)°, γ = 68.261(1)°]. The coordination of MTB4– to Cd2+ results in infinite layers parallel to (001). The layers, not connected by any hydrogen bonds, contain small openings of about 320 pm × 340 pm.  相似文献   

7.
Triclinic single crystals of Cu4(H3N–(CH2)9–NH3)(OH)2[C6H2(COO)4]2 · 5H2O were prepared in aqueous solution at 80 °C in the presence of 1,9‐diaminononane. Space group P$\bar{1}$ (no. 2) with a = 1057.5(2), b = 1166.0(2), c = 1576.7(2) pm, α = 106.080(10)°, β = 90.73(2)° and γ = 94.050(10)°. The four crystallographic independent Cu2+ ions are surrounded by five oxygen atoms each with Cu–O distances between 191.4(3) and 231.7(4) pm. The connection between the Cu2+ coordination polyhedra and the [C6H2(COO)4]4– anions yields three‐dimensional framework with negative excess charge and wide centrosymmetric channel‐like voids. These voids extend parallel to [001] with the diagonal of the nearly rectangular cross‐section of approximately 900 pm. The channels of the framework accommodate [H3N–(CH2)9–NH3]2+ cations and water molecules, which are not connected to Cu2+. The nonane‐1,9‐diammonium cations adopt a partial gauche conformation. Thermoanalytical measurements in air show a loss of water of crystallization starting at 90 °C and finishing at approx. 170 °C. The dehydrated compound is stable up to 260 °C followed by an exothermic decomposition yielding copper oxide.  相似文献   

8.
Two new three‐dimensional frameworks with zeolite‐like channels were prepared in the presence of 1,6‐diaminohexane. Cu1.5(H3N–(CH2)6–NH3)0.5[C6H2(COO)4] · 5H2O ( 1 ) crystallizes in the triclinic space group P$\bar{1}$ with a = 772.56(7), b = 1110.36(7), c = 1111.98(8) pm, α = 98.720(7)°, β = 108.246(9)°, and γ = 95.559(7)°. Cu2(H3N–(CH2)6–NH3)0.5(OH)[C6H2(COO)4] · 3H2O ( 2 ) crystallizes in the monoclinic space group P2/c with a = 1159.34(11), b = 1059.44(7), c = 1582.2(2) pm, and β = 106.130(11)°. The Cu2+ coordination polyhedra are connected by [C6H2(COO)4]4– anions to yield three‐dimensional frameworks with wide centrosymmetric channel‐like voids. Complex 1 reveals voids extending along [100] with diagonals of 900 pm and 300 pm, whereas in complex 2 the diagonal of the nearly rectangular crossection of the channels extending parallel to [001] is 900 pm. The negative excess charges of the frameworks are compensated by [H3N–(CH2)6–NH3]2+ cations, which occupy the voids along with water molecules. The [H3N–(CH2)6–NH3]2+ cations are not connected to Cu2+ and have served as templates.  相似文献   

9.
Single Crystals of La[AsO4] with Monazite‐ and Sm[AsO4] with Xenotime‐Type Structure Brick‐shaped, transparent single crystals of colourless monazite‐type La[AsO4] (monoclinic, P21/n, a = 676.15(4), b = 721.03(4), c = 700.56(4) pm, β =104.507(4)°, Z = 4) and pale yellow xenotime‐type Sm[AsO4] (tetragonal, I41/amd, a = 718.57(4), c = 639.06(4) pm, Z = 4) emerge as by‐products from alkali and rare‐earth metal chloride fluxes whenever the synthesis of lanthanide(III) oxoarsenate(III) derivatives from admixtures of the corresponding sesquioxides in sealed, evacuated silica ampoules is accompanied by air intrusion and subsequent oxidation. Nine oxygen atoms from seven discrete [AsO4]3? tetrahedra recruit the rather irregular coordination sphere of La3+ (d(La3+?O2?) = 248 – 266 pm plus 291 pm) and even a tenth ligand could be considered at a distance of 332 pm. The trigonal dodecahedral figure of coordination consisting of eight oxygen atoms at distances of 236 and 248 pm (4× each) about Sm3+ is provided by only six isolated tetrahedral [AsO4]3? units. Alternating trans‐edge condensation of the latter with the [LaO9+1] polyhedra of monazite‐type La[AsO4] and the [SmO8] polyhedra of xenotime‐type Sm[AsO4] constitutes the main structural chain features along [100] or [001], respectively. The bond distances and angles of the complex [AsO4]3? anions range within common intervals (d(As5+?O2?) = 167 – 169 pm, ?(O–As–O) = 100 – 116°) for both lanthanide(III) oxoarsenates(V) presented here.  相似文献   

10.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

11.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

12.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

13.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

14.
The reaction of Pb[CO3] with an aqueous solution of (H3O)2[B10H10] in an equimolar ratio leads to two lead(II) decahydro‐closo‐decaborate hydrates both as triclinic, pale yellow single crystals. The water‐rich compound with the formula [Pb(H2O)3]2Pb[B10H10]3 · 5.5H2O crystallizes in the space group P1 (a = 711.72(4), b = 1243.14(8), c = 2064.83(12) pm, α = 81.806(3), β = 83.795(3), γ = 80.909(3)°) with Z = 2. The compound with the lower water content, [Pb(H2O)3]Pb[B10H10]2 · 1.5H2O, also crystallizes in P1 (a = 718.46(4), b = 1288.75(8), c = 1279.91(8) pm, α = 70.145(3), β = 75.976(3), γ = 80.324(3)°) with Z = 2. Both structures can be described as layered arrangements and contain one Pb2+ cation each, which is only coordinated by the hydridic hydrogen atoms of the hydroborate anions. All the others are primarily surrounded by three water molecules in a non‐planar fashion and additional hydrogen atoms of [B10H10]2– anions. The non‐lead‐bonded crystal water molecules in both structures are all connected via hydrogen bonds to the water molecules, which coordinate the Pb2+ cations, as well as via non‐classical hydrogen bonds to the cluster anions and reside between the layers. The [B10H10]2– anions show only slight distortions from their ideal shape as bicapped square antiprisms.  相似文献   

15.
La3OCl[AsO3]2: A Lanthanum Oxide Chloride Oxoarsenate(III) with a “Lone‐Pair” Channel Structure La3OCl[AsO3]2 was prepared by the solid‐state reaction between La2O3 and As2O3 using LaCl3 and CsCl as fluxing agents in evacuated silica ampoules at 850 °C. The colourless crystals with pillar‐shaped habit crystallize tetragonally (a = 1299.96(9), c = 558.37(5) pm, c/a = 0.430) in the space group P42/mnm (no. 136) with four formula units per unit cell. The crystal structure contains two crystallographically different La3+ cations. (La1)3+ is coordinated by six oxygen atoms and two chloride anions in the shape of a bicapped trigonal prism (CN = 8), whereas (La2)3+ carries eight oxygen atoms and one Cl? anion arranged in the shape of tricapped trigonal prism (CN = 9). The isolated pyramidal [AsO3]3? anions (d(As–O) = 175–179 pm) consist of three oxygen atoms (O2 and two O3), which surround the As3+ cations together with the free, non‐binding electron pair (lone pair) Ψ1‐tetrahedrally (?(O–As–O) = 95°, 3×). One of the three crystallographically independent oxygen atoms (O1), however, is exclusively coordinated by four (La2)3+ cations in the shape of a real tetrahedron (d(O–La) = 236 pm, 4×). These [(O1)(La2)4]10+ tetrahedra form endless chains in the direction of the c axis through trans‐edge condensation. Empty channels, constituted by the lonepair electrons of the Cl? anions and the As3+ cations in the Ψ1‐tetrahedral oxoarsenate(III) anions [AsO3]3?, run parallel to [001] as well.  相似文献   

16.
Synthesis and Crystal Structure of the Fluoride ino‐Oxosilicate Cs2YFSi4O10 The novel fluoride oxosilicate Cs2YFSi4O10 could be synthesized by the reaction of Y2O3, YF3 and SiO2 in the stoichiometric ratio 2 : 5 : 3 with an excess of CsF as fluxing agent in gastight sealed platinum ampoules within seventeen days at 700 °C. Single crystals of Cs2YFSi4O10 appear as colourless, transparent and water‐resistant needles. The characteristic building unit of Cs2YFSi4O10 (orthorhombic, Pnma (no. 62), a = 2239.75(9), b = 884.52(4), c = 1198.61(5) pm; Z = 8) comprises infinite tubular chains of vertex‐condensed [SiO4]4? tetrahedra along [010] consisting of eight‐membered half‐open cube shaped silicate cages. The four crystallographically different Si4+ cations all reside in general sites 8d with Si–O distances from 157 to 165 pm. Because of the rigid structure of this oxosilicate chain the bridging Si–O–Si angles vary extremely between 128 and 167°. The crystallographically unique Y3+ cation (in general site 8d as well) is surrounded by four O2? and two F? anions (d(Y–O) = 221–225 pm, d(Y–F) = 222 pm). These slightly distorted trans‐[YO4F2]7? octahedra are linked via both apical F? anions by vertex‐sharing to infinite chains along [010] (?(Y–F–Y) = 169°, ?(F–Y–F) = 177°). Each of these chains connects via terminal O2? anions to three neighbouring oxosilicate chains to build up a corner‐shared, three‐dimensional framework. The resulting hexagonal and octagonal channels along [010] are occupied by the four crystallographically different Cs+ cations being ten‐, twelve‐, thirteen‐ and fourteenfold coordinated by O2? and F? anions (viz.[(Cs1)O10]19?, [(Cs2)O10F2]21?, [(Cs3)O12F]24?, and [(Cs4)O12F2]25? with d(Cs–O) = 309–390 pm and d(Cs–F) = 360–371 pm, respectively).  相似文献   

17.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

18.
Bright red crystals of [Mn(H2O)6][BiI4]2 · 2H2O are obtained from a solution of MnI2, BiI3, and I2 in absolute ethanol, which is exposed to humid air. Reversible dehydratization sets in at about 50 °C. Added water decomposes the hydrate by irreversible precipitation of BiOI. The optical bandgap is about 1.9(1) eV. X‐ray diffraction on a single‐crystal revealed a monoclinic lattice (space group P21/c) with a = 760.39(4) pm, b = 1315.6(1) pm, c = 1398.37(7) pm, and β = 97.438(4)°. In the crystal structure zigzag chains of edge‐sharing [BiI2/1I4/2] octahedra and linear strings of H2O‐bridged [Mn(H2O)6]2+ octahedra run parallel [100].  相似文献   

19.
While attempting to synthesize the potassium and rubidium copper diyttrium tetratellurides KCuY2Te4 and RbCuY2Te4 in analogy to CsCuY2Te4 from 1:1:4‐molar mixtures of the elements (copper, yttrium and tellurium) with an excess of KBr or RbBr as flux and potassium or rubidium source, brown plate‐shaped crystals of KYTe2 and RbYTe2 with triangular cross‐section were obtained instead after 14 days at 900 °C in torch‐sealed evacuated silica tubes. These new ternary yttrium tellurides crystallize in the trigonal (KYTe2) or hexagonal system (RbYTe2) with space group R m (no. 166) or P63/mmc (no. 194), respectively. With unit cell dimensions of a = 439.51(2) pm, c = 2255.48(9) pm (c/a = 5.132) for KYTe2 and a = 443.26(2) pm, c = 1729.15(7) pm (c/a = 3.901) for RbYTe2, both crystal structures exhibit cadmium‐halide analogous layers spreading out parallel to the (001) planes, which are formed by edge‐condensation of the involved [YTe6]9– octahedra (d(Y3+–Te2–) = 308–309 pm). Charge compensation and three‐dimensional linkage of these anionic layers are achieved by monovalent interlayer alkali‐metal cations residing in trigonal antiprismatic (K+ in α‐NaFeO2‐type KYTe2, d(K+–Te2–) = 324 pm, 6×) or prismatic coordination (Rb+ in β‐RbScO2‐type RbYTe2, d(Rb+–Te2–) = 365 pm, 6×) of six Te2– ions each.  相似文献   

20.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号