首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

2.
Iodide is a very soft and large anion and as such its extreme ability to be polarized leads to a flat energy surface with respect to the variation of the Ca–I distances in [(L)nCaI2] and [(L)nCa(R)I]. The influence of the donor strength and the bulkiness of the neutral coligands L on the Ca–I distances is studied. The base adducts of calcium diiodide can be isolated after the addition of L to CaI2 or from the Schlenk equilibrium after the direct synthesis of calcium powder with aryl iodides. As L the ethers diethyl ether (Et2O), tetrahydrofuran (thf), tetrahydropyran (thp), 1,2‐dimethoxyethane (dme), 18‐crown‐6 (18C6), bis(methoxyethyl)ether (diglyme), and amines tetramethylethylenediamine (tmeda), and hexamethyltriethylenetetramine (hmteta) are studied yielding the adducts [(thp)4Ca(Ph)I] ( 1a ), [(thf)4Ca(Ph)I] ( 1b ), [(dme)2(thf)Ca(Ph)I] ( 1c ), [(18C6)Ca(Ph)I] ( 1d ), and [(tmeda)2Ca(Ph)I] ( 1e ), as well as [(thp)4CaI2] ( 2a ), [(thf)4CaI2] ( 2b ), [(Et2O)4CaI2] ( 2c ), [(diglyme)(thf)2CaI2] ( 2d ), [(diglyme)(dme)CaI2] ( 2e ), [(dme)2(thf)CaI2] ( 2f ), [(18C6)CaI2] ( 2g ), [(tmeda)2CaI2] ( 2h ), and [(hmteta)CaI2] ( 2i ). For comparison reasons, [(thf)4Ca(Ph)Br] ( 3a ), [(thp)4CaBr2] ( 4a ), [(thf)4CaBr2] ( 4b ), and [(dme)2(AcOH)CaBr2] ( 4c ) with AcOH being acetic acid are included as well. The comparison shows that the coordination number of calcium itself only plays an insignificant role whereas bulkiness and donor strength of L represent the key influences.  相似文献   

3.
Unique outcomes have emerged from the redox transmetallation/ protolysis (RTP) reactions of europium metal with [Ag(C6F5)(py)] (py=pyridine) and pyrazoles (RR′pzH). In pyridine, a solvent not normally used for RTP reactions, the products were mainly EuII complexes, [Eu(RR′pz)2(py)4] (RR′pz=3,5-diphenylpyrazolate (Ph2pz) 1 ; 3-(2-thienyl)-5-trifluoromethylpyrazolate (ttfpz) 2 ; 3-methyl-5-phenylpyrazolate (PhMepz) 3 ). However, use of 3,5-di-tert-butylpyrazole (tBu2pzH) gave trivalent [Eu(tBu2pz)3(py)2] 4 , whereas the bulkier N,N′-bis(2,6-difluorophenyl)formamidine (DFFormH) gave divalent [Eu(DFForm)2(py)3] 5 . In tetrahydrofuran (thf), the usual solvent for RTP reactions, C−F activation was observed for the first time with [Ag(C6F5)(py)] in such reactions. Thus trivalent [{Eu2(Ph2pz)4(py)4(thf)2(μ-F)2}{Eu2(Ph2pz)4(py)2(thf)4(μ-F)2}] ( 6 ), [Eu2(ttfpz)4(py)2(dme)2(μ-F)2] ( 7 ), [Eu2(tBu2pz)4(dme)2(μ-F)2] ( 8 ) were obtained from the appropriate pyrazoles, the last two after crystallization from 1,2-dimethoxyethane (dme). Surprisingly 3,5-dimethylpyrazole (Me2pzH) gave the divalent cage [Eu6(Me2pz)10(thf)6(μ-F)2] ( 9 ). This has a compact ovoid core held together by bridging fluoride, thf, and pyrazolate ligands, the last including the rare μ4-1η5(N2C3): 2η2(N,N′): 3κ(N): 4κ(N′) pyrazolate binding mode. With the bulky N,N′-bis(2,6-diisopropylphenyl)formamidine (DippFormH), which often favours C−F activation in RTP reactions, neither oxidation to EuIII nor C−F activation was observed and [Eu(DippForm)2(thf)2] ( 10 ) was isolated. By contrast, Eu reacted with Bi(C6F5)3 and Ph2pzH or tBu2pzH in thf without C−F activation, to give [Eu(Ph2pz)2(thf)4] ( 11 ) and [Eu(tBu2pz)3(thf)2] ( 12 ) respectively, the oxidation state outcomes corresponding to that for use of [Ag(C6F5)(py)] in pyridine.  相似文献   

4.
The reactions of dialumane [L(thf)Al? Al(thf)L] ( 1 , L=[{(2,6‐iPr2C6H3)NC(Me)}2]2?) with stilbene and styrene afforded the oxidation/insertion products [L(thf)Al(CH(Ph)? CH(Ph))AlL] ( 2 ) and [L(thf)Al(CH(Ph)? CH2)Al(thf)L] ( 3 ), respectively. In the presence of Na metal, precursor 1 reacted with butadienes, possibly through the reduced “dialumene” or the “carbene‐like” :AlL species, to yield aluminacyclopentenes [LAl(CH2C(Me)?C(Me)CH2)Na]n ( 4 a ) and [Na(dme)3][LAl(CH2C(Me)?CHCH2)] ( 4 b , dme=dimethoxyethane) as [1+4] cycloaddition products, as well as the [2+4] cycloaddition product 1,6‐dialumina‐3,8‐cyclodecadiene, [{Na(dme)}2][LAl(CH2C(Me)?C(Me)CH2)2AlL] ( 5 ). The possible mechanisms of the cycloaddition reactions were studied by using DFT computations.  相似文献   

5.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

6.
New reactive, divalent lanthanoid formamidinates [Yb(Form)2(thf)2] (Form=[RNCHNR]; R=o‐MeC6H4 (o‐TolForm; 1 ), 2,6‐Me2C6H3 (XylForm; 2 ), 2,4,6‐Me3C6H2 (MesForm; 3 ), 2,6‐Et2C6H3 (EtForm; 4 ), o‐PhC6H4 (o‐PhPhForm; 5 ), 2,6‐iPr2C6H3 (DippForm; 6 ), o‐HC6F4 (TFForm; 7 )) and [Eu(DippForm)2(thf)2] ( 8 ) have been prepared by redox transmetallation/protolysis reactions between an excess of a lanthanoid metal, Hg(C6F5)2 and the corresponding formamidine (HForm). X‐ray crystal structures of 2 – 6 and 8 show them to be monomeric with six‐coordinate lanthanoid atoms, chelating N,N′‐Form ligands and cis‐thf donors. However, [Yb(TFForm)2(thf)2] ( 7 ) crystallizes from THF as [Yb(TFForm)2(thf)3] ( 7 a ), in which ytterbium is seven coordinate and the thf ligands are “pseudo‐meridional”. Representative complexes undergo C? X (X=F, Cl, Br) activation reactions with perfluorodecalin, hexachloroethane or 1,2‐dichloroethane, and 1‐bromo‐2,3,4,5‐tetrafluorobenzene, giving [Yb(EtForm)2F]2 ( 9) , [Yb(o‐PhPhForm)2F]2 ( 10) , [Yb(o‐PhPhForm)2Cl(thf)2] ( 11) , [Yb(DippForm)2Cl(thf)] ( 12) and [Yb(DippForm)2Br(thf)] ( 16) . X‐ray crystallography has shown 9 to be a six‐coordinate, fluoride‐bridged dimer, 12 and 16 to be six‐coordinate monomers with the halide and thf ligands cis to each other, and 11 to have a seven‐coordinate Yb atom with “pseudo‐meridional” unidentate ligands and thf donors cis to each other. The analogous terbium compound [Tb(DippForm)2Cl(thf)2] ( 13 ), prepared by metathesis, has a similar structure to 11 . C? Br activation also accompanies the redox transmetallation/protolysis reactions between La, Nd or Yb metals, Hg(2‐BrC6F4)2, and HDippForm, yielding [Ln(DippForm)2Br(thf)] complexes (Ln=La ( 14 ), Nd ( 15 ), Yb ( 16 )).  相似文献   

7.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

8.
For the first time, unsubstituted mixed lithium and calcium phenolates could be structurally characterized in the solid state. Compound [CaLi63‐OPh)8(thf)6] ( 1 ), was obtained from the reaction of CaI2 with LiOPh in THF, and features two heterocubane units fused via the calcium ion. Upon recrystallization from the bidentate ligand DME, the aggregate [Ca2(dme)2(μ‐OPh)6{Li(dme)}2] ( 2 ) is obtained, in which the metal ions form a chain motif, being pairwise bridged by phenolate. The transformation of 1 into 2 upon addition of DME can be followed by 7Li‐NMR spectroscopy.  相似文献   

9.
Redox transmetallation ligand exchange reactions involving a rare earth metal, 2,4,6‐trimethylphenol (HOmes), and a diarylmercurial afford rare earth aryloxo complexes, which are structurally characterized. Both the lanthanoid contraction and the identity of the reaction solvent are found to influence the outcome of the reactions. Using THF in the reaction affords a dinuclear species [Ln2(Omes)6(thf)4]?2THF (Ln=La 1 , Nd 2 ) for the lighter rare earth metals, while a mononuclear species [Ln(Omes)3(thf)3] (Ln=Sm 3 , Tb 5 , Er 6 , Yb 7 , Y 8 ) is obtained for the heavier rare earth elements. Surprisingly, there is no change in metal coordination number between the two structural motifs. A divalent trinuclear linear complex [Eu3(Omes)6(thf)6] 4 is obtained for Eu, and features solely bridging aryloxide ligands. Using DME as the reaction solvent affords [La(Omes)3(dme)2] 9 from the reaction mixture, and [Ln2(Omes)6(dme)2]?PhMe (La 10 , Nd 11 ) and [Y(Omes)3(dme)2] 14 following crystallization of the crude product from toluene. The dinuclear species [Eu2(Omes)4(dme)4] 12 contains two unidentate and two chelating DME ligands, and contrasts the linear structure of 4 . Treatment of HOmes and HgPh2 with Yb metal in DME affords the mixed valent YbII/III complex [Yb2(Omes)5(dme)2] 13 , which is stabilized by an intramolecular π‐Ph–Yb interaction, and is a rare example of a mixed valent rare earth aryloxide. Treatment of Er metal with HOmes at elevated temperature (solvent free) affords the homoleptic [Er4(Omes)12] 15 , which consists of a tetranuclear array of Er atoms arranged in a ‘herringbone’ fashion; the structure is stabilized by intramolecular π‐Ph–Er interactions. Reaction of La metal with HOmes under similar conditions yields toluene insoluble “La(Omes)3”, which affords 1 following extraction with THF.  相似文献   

10.
New Mono- and Polynuclear Complexes of the Lanthanides. On the Reaction of Ph2Se2 with Ytterbium Surprising formation of different complexes during the reaction of Ytterbium with Dichalcogenides. With THF is the mononuclear complex [Yb(SePh)3(thf)3] 1 (space group P31c (No. 159), Z = 2, a = 15.353(3) Å, c = 7.8920(10) Å) built up. In this compound is the Lanthanidion octahedrally souronded by the ligands. Reaction in Toluol/THF leads in contrast to the tetranuclear complex [Yb4(SePh)8O2(thf)6] 2 (space group C2/c (No. 14), Z = 4, a = 27.084(9) Å, b = 13.021(4) Å, c = 24.002(8) Å, β = 106.13(3)°). In DME it is possible to isolate the ionic species [Yb3(SePh)6(dme)4][Yb(SePh)4(dme)] 3 (space group P1 (No. 2), Z = 2, a = 11.109(3) Å, b = 11.664(2) Å, c = 36.303(10) Å, α = 84.60(4)°, β = 89.52(3)°, γ = 73.69(2)°). In this reactions are neutral and also ionic complexes accesible.  相似文献   

11.
Rare examples of amido‐iodo complexes of selected divalent lanthanides can be synthesized by using deprotonated Ap*H {Ap*H = 2,6‐diisopropylphenyl)‐[6‐(2,4,6‐triisopropylphenyl)‐pyridin‐2‐yl]‐amine} as a stabilizing ligand. Reaction of [Ap*K]n with [LnI2(thf)n] (Ln = Eu, Yb, n = 4,5) in THF leads to [Ln(Ap*)I(thf)2]2 (Ln = Eu, Yb). An attempted reduction of these divalent heteroleptic complexes with KC8 to synthesize complexes containing an unsupported Ln–Ln bond resulted in the formation of [Ln(Ap*)2(thf)2]. These lanthanide complexes were characterized by X‐ray structure analysis.  相似文献   

12.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

13.
The homoleptic pyrazolate complexes [CeIII4(Me2pz)12] and [CeIV(Me2pz)4]2 quantitatively insert CO2 to give [CeIII4(Me2pz?CO2)12] and [CeIV(Me2pz?CO2)4], respectively (Me2pz=3,5‐dimethylpyrazolato). This process is reversible for both complexes, as observed by in situ IR and NMR spectroscopy in solution and by TGA in the solid state. By adjusting the molar ratio, one molecule of CO2 per [CeIV(Me2pz)4] complex could be inserted to give trimetallic [Ce3(Me2pz)9(Me2pz?CO2)3(thf)]. Both the cerous and ceric insertion products catalyze the formation of cyclic carbonates from epoxides and CO2 under mild conditions. In the absence of epoxide, the ceric catalyst is prone to reduction by the co‐catalyst tetra‐n‐butylammonium bromide (TBAB).  相似文献   

14.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

15.
The first cyclodiphosph(III)azane complexes of the rare‐earth elements have been synthesized. Reactions of the lithium salt cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous yttrium trichloride or the heavier lanthanide trichlorides resulted in the corresponding cyclodiphosph(III)azane complexes [Li(thf)4][{(tBuNP)2(tBuN)2}LnCl2] (Ln=Y ( 1 a ), Ho ( 1 b ), Er ( 1 c )). The single‐crystal X‐ray structures showed that compounds 1 a – c consisted of ion pairs composed of a [Li(thf)4]+ cation and a C2v symmetric [{(tBuNP)2(tBuN)2}LnCl2]? anion. By treating cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous SmCl3 in THF, the trimetallic complex [{(tBuNP)2(tBuN)2}SmCl3Li2(thf)4] ( 2 ) was obtained. The influence of the ionic radii of the lanthanides can be seen in the single‐crystal X‐ray structure of compound 2 , which forms a six‐membered Cl‐Li‐Cl‐Li‐Cl‐Sm metallacycle. The ring adopts a boat conformation in which one chlorine atom and the samarium atom are displaced from the Cl2Li2 least‐square plane. Heating of the metalate complexes in toluene resulted in the extrusion of lithium chloride and the formation of the neutral dimeric metal chloride complexes of the composition [(tBuNP)2(tBuN)2LnCl(thf)]2 (Ln=Y ( 3 a ), La ( 3 b ) Nd ( 3 c ), Sm ( 3 d )). Furthermore, treating 1 a with KNPh2 resulted in a lithium metalate complex of the composition [Li(thf)4][{(tBuNP)2(tBuN)2}Y(NPh2)2] ( 4 ). The coordination mode of the {(tBuNP)2(tBuN)2}2? ligand in 4 is different to that observed in 1 a – c , 2 , and 3 a – d ; instead of a symmetric η2 coordination of the ligand, a heterocubane‐type structure is observed in the solid state. The complex [(tBuNP)2(tBuN)2NdCl(thf)] ( 3 c ) was used as a Ziegler–Natta catalyst for the polymerization of 1,3‐butadiene to poly‐cis‐1,4‐butadiene. The observed activities of the Ziegler–Natta catalyst strongly depended upon the nature of the cocatalyst; in some case very high turnover rates and a cis selectivity of 93–94 % were observed.  相似文献   

16.
Reactions of R2SbH with BuLi at ?70 °C in tetrahydrofuran (thf) lead to [R2SbLi(thf)3] [R = Ph ( 1 ) or R = Mes ( 2 )]. The antimonides [tBu2SbK(pmdeta)] ( 3 ) (pmdeta = pentamethyldiethylenetriamine), [Li(tmeda)2][tBu4Sb3]·benzene ( 4 ) (tmeda = tetramethylethylenediamine), and [tBu4Sb3Na(tmeda, thf)] ( 5 ) result from the reduction of cyclo‐(tBuSb)4 by Li, Na, or K with pmdeta or tmeda in thf. The primary stibanes RSbH2 [R = Mes ( 6 ), 2‐(Me2NCH2)C6H2 ( 7 )] are synthesized by reactions of RSbCl2 with LiAlH4. PhSbH2 reacts with BuLi, and tmeda in toluene to give [Sb7Li3(tmeda)3]·toluene ( 8 ). [Sb7Na3(pmdeta)3]·toluene ( 9 ) is obtained from PhSbH2, Na in liqu. NH3, pmdeta and toluene. Crystal structures are reported for 1 – 5 and 9 .  相似文献   

17.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

18.
A new family of Y4/M2 and Y5/M heterobimetallic rare‐earth‐metal/d‐block‐transition‐metal? polyhydride complexes has been synthesized. The reactions of the tetranuclear yttrium? octahydride complex [{Cp′′Y(μ‐H)2}4(thf)4] (Cp′′=C5Me4H, 1‐C5Me4H ) with one equivalent of Group‐6‐metal? pentahydride complexes [Cp*M(PMe3)H5] (M=Mo, W; Cp*=C5Me5) afforded pentanuclear heterobimetallic Y4/M? polyhydride complexes [{(Cp′′Y)4(μ‐H)7}(μ‐H)4MCp*(PMe3)] (M=Mo ( 2 a ), W ( 2 b )). UV irradiation of compounds 2 a , b in THF gave PMe3‐free complexes [{(Cp′′Y)4(μ‐H)6(thf)2}(μ‐H)5MCp*] (M=Mo ( 3 a ), W ( 3 b )). Compounds 3 a , b reacted with one equivalent of [Cp*M(PMe3)H5] to afford hexanuclear Y4/M2 complexes [{Cp*M(μ‐H)5}{(Cp′′Y)4(μ‐H)5}{(μ‐H)4MCp*(PMe3)}] (M=Mo ( 4 a ), W ( 4 b )). UV irradiation of compounds 4 a , b provided the PMe3‐free complexes [(Cp′′Y)4(μ‐H)4{(μ‐H)5MCp*}2] (M=Mo ( 5 a ), W ( 5 b )). C5Me4Et‐ligated analogue [(Cp′′Y)4(μ‐H)4{(μ‐H)5Mo(C5Me4Et)}2] ( 5 a′ ) was obtained from the reaction of 1‐C5Me4H with [(C5Me4Et)Mo(PMe3)H5]. On the other hand, the reaction of pentanuclear yttrium? decahydride complex [{(C5Me4R)Y(μ‐H)2}5(thf)2] ( 1‐C5Me5 : R=Me; 1‐C5Me4Et : R=Et) with [Cp*M(PMe3)H5] gave the hexanuclear heterobimetallic Y5/M? polyhydride complexes [({(C5Me4R)Y}5(μ‐H)8)(μ‐H)5MCp*] ( 6 a : M=Mo, R=Me; 6 a′ : M=Mo, R=Et; 6 b : M=W, R=Me). Compound 5 a released two molecules of H2 under vacuum to give [(Cp′′Y)4(μ‐H)2{(μ‐H)4MoCp*}2] ( 7 ). In contrast, compound 6 a lost one molecule of H2 under vacuum to yield [{(Cp*Y)5(μ‐H)7}(μ‐H)4MoCp*] ( 8 ). Both compounds 7 and 8 readily reacted with H2 to regenerate compounds 5 a and 6 a , respectively. The structures of compounds 4 a , 5 a′ , 6 a′ , 7 , and 8 were determined by single‐crystal X‐ray diffraction.  相似文献   

19.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

20.
A general procedure was developed for the synthesis of diarylcalcium complexes by addition of KOtBu to arylcalcium iodides in THF. Intermediate arylcalcium tert‐butanolate dismutates immediately leading to insoluble tert‐butanolate precipitates of calcium. Depending on the steric demand and denticity of additional neutral aliphatic azabases, mononuclear or dinuclear complexes trans‐[Ca(αNaph)2(thf)4] ( 1 ), [Ca(β‐Naph)2(thf)4] ( 2 ), [Ca(Tol)2(tmeda)]2 ( 3 ), [Ca(Ph)2(tmeda)]2 ( 4 ), [Ca(Ph)2(pmdta)(thf)] ( 5 ), [Ca(hmteta)(Ph)2] ( 6 ), and [Ca([18]C‐6)(Ph)2] ( 7 ) were isolated (Naph=naphthyl; meda=N,N,N′,N′‐tetramethylethylenediamine; pmdta= N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine; hmteta=N,N,N′,N′′,N′′′,N′′′‐hexamethyltriethylenetetramine). The Ca?C bond lengths vary between 250.8 and 263.5 pm, the ipso‐carbon atoms show low‐field‐shifted resonances in the 13C NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号