首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk‐scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2, the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.  相似文献   

2.
Hydrogen peroxide was discovered in 1818 and has been used in bleaching for over a century [ 1 ]. H2O2 on its own is a relatively weak oxidant under mild conditions: It can achieve some oxidations unaided, but for the majority of applications it requires activation in one way or another. Some activation methods, e.g., Fenton's reagent, are almost as old [ 2 ]. However, by far the bulk of useful chemistry has been discovered in the last 50 years, and many catalytic methods are much more recent. Although the decomposition of hydrogen peroxide is often employed as a standard reaction to determine the catalytic activity of metal complexes and metal oxides [ 3 , 4 ], it has recently been extensively used in intrinsically clean processes and in end‐of‐pipe treatment of effluent of chemical industries [ 5 , 6 ]. Furthermore, the adoption of H2O2 as an alternative of current industrial oxidation processes offer environmental advantages, some of which are (1) replacement of stoichiometric metal oxidants, (2) replacement of halogens, (3) replacement or reduction of solvent usage, and (4) avoidance of salt by‐products. On the other hand, wasteful decomposition of hydrogen peroxide due to trace transition metals in wash water in the fabric bleach industry, was also recognized [ 7 ]. The low intrinsic reactivity of H2O2 is actually an advantage, in that a method can be chosen which selectively activates it to perform a given oxidation. There are three main active oxidants derived from hydrogen peroxide, depending on the nature of the activator; they are (1) inorganic oxidant systems, (2) active oxygen species, and (3) per oxygen intermediates. Two general types of mechanisms have been postulated for the decomposition of hydrogen peroxide in the presence of transition metal complexes. The first is the radical mechanism (outer sphere), which was proposed by Haber and Weiss for the Fe(III)‐H2O2 system [ 8 ]. The key features of this mechanism were the discrete formation of hydroxyl and hydroperoxy radicals, which can form a redox cycle with the Fe(II)/Fe(III) couple. The second is the peroxide complex mechanism, which was proposed by Kremer and Stein [ 9 ]. The significant difference in the peroxide complex mechanism is the two‐electron oxidation of Fe(III) to Fe(V) with the resulting breaking of the peroxide oxygen‐oxygen bond. It is our intention in this article to briefly summarize the kinetics as well as the mechanisms of the decomposition of hydrogen peroxide, homogeneously and heterogeneously, in the presence of transition metal complexes. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 643–666, 2000  相似文献   

3.
Sustainability concerns are the wind in the sails for the development of novel, more selective catalytic processes. Hence, chiral catalysts play a crucial role in the green production of enantioenriched compounds. To further increase the green profile of this approach, the use of solid‐supported catalytic species is appealing due to the reduced generation of waste, as well as the possibility of reusing the precious catalyst. Even more attractive is the implementation of flow processes based on these immobilized catalysts, a flexible strategy that allows to generate from milli‐ to multi‐gram amounts of chiral product with a reduced footprint set‐up. Herein, we will present the efforts devoted in our laboratory towards the immobilization of chiral catalysts and their use in single‐pass, highly enantioselective, flow processes. Proline, diarylprolinols, other aminocatalysts, squaramides, thioureas, phosphoric acids and even chiral ligands and metal‐based catalysts constitute our current toolkit of supported species for enantioselective catalysis.  相似文献   

4.
This review article encompasses the progress and conventional overview of current research activities of porous organic polymers (POPs), especially in catalysis, as they have garnered colossal interest in the scientific fraternity due to their intriguing characteristic features. Various synthetic strategies with possible modification of functionality of POPs have been used to improve the catalytic efficiency towards value‐added chemicals production. Accordingly, this review article is mainly focused on the design, development of various functionalized POPs by employing Friedel‐Crafts alkylation, FeCl3 assisted oxidative polymerisation and polymerisation in nonaqueous medium, and a comprehensive understanding in potential catalytic applications namely, acetalization, hydrodeoxygenation (HDO), hydrogenation, coupling, photocatalytic hydrogen evolution and biomass conversion towards the production of value‐added chemicals in biodiesel and chemical industries.  相似文献   

5.
The thermodynamics and kinetics of the chemical and electrochemical charging of a catalyst surface are very important to understand its applicability as a catalyst material, particularly in redox catalysis. Through the present study, we hereby communicate the results obtained from our detailed investigations related to the effect of chemical charging on the plasmonic behavior of silver metal nanoparticles (Ag MNPs) as redox catalysts. Two different batches of Ag MNPs were prepared through thermally assisted chemical reduction of silver ions. The difference in these batches was the use or not of citrate‐capped cadmium selenide quantum dots (Q‐CdSe) for the reduction of solution‐phase silver ions to their colloidal plasmonic phase. The charge on the surfaces of the Ag MNPs was varied by the chemical electron injection method by using BH4? ions from a NaBH4 solution. The processes of charging and discharging were monitored by using UV/Vis absorption spectroscopy. The impact of the concentration of the reductant on the charging and discharging processes was also investigated. The Ag MNPs were also tested for their voltammetric response, wherein it was observed that it was more difficult to oxidize the Ag MNPs prepared with Q‐CdSe seeds than to oxidize Ag MNPs prepared without Q‐CdSe particles. Our results demonstrate that Q‐CdSe seeds not only enhance the redox catalytic activity of Ag MNPs but also provide stability towards polarization of their plasmonic behavior.  相似文献   

6.
Simple and inexpensive polyhalides (CCl4 and C2Cl6) have been found to be effective and versatile oxidants in removing electrons from Breslow intermediates under N‐heterocyclic carbene (NHC) catalysis. This oxidative reaction involves multiple single‐electron‐transfer (SET) processes and several radical intermediates. The α, β, and γ‐carbon atoms of aldehydes and enals could be readily functionalized. Given the low cost of the oxidants and the broad applicability of the reactions, this study is expected to greatly enhance the feasibility of oxidative NHC catalysis for large‐scale applications. Also this new SET radical process with polyhalides as single‐electron oxidants will open a new avenue in the development of NHC‐catalyzed radical reactions.  相似文献   

7.
《化学:亚洲杂志》2017,12(19):2539-2543
Enzymes normally lose their activities under extreme conditions due to the dissociation of their active tertiary structure. If an enzyme could maintain its catalytic activity under non‐physiological or denaturing conditions, it might be used in more applications in the pharmaceutical and chemical industries. Recently, we reported a coiled‐coil six‐helical bundle (6HB) structure as a scaffold for designing artificial hydrolytic enzymes. Here, intermolecular isopeptide bonds were incorporated to enhance the stability and activity of such biomolecules under denaturing conditions. These isopeptide bridge‐tethered 6HB enzymes showed exceptional stability against unfolding and retained or even had increased catalytic activity for a model hydrolysis reaction under thermal and chemical denaturing conditions. Thus, isopeptide bond‐tethering represents an efficient route to construct ultrastable artificial hydrolases, with promising potential to maintain biocatalysis under extreme conditions.  相似文献   

8.
Transition‐metal‐catalyzed C–H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C–H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox‐neutral C–H bond functionalization strategy for direct addition of inert C–H bonds to unsaturated double bonds and a redox‐green C–H bond functionalization strategy for realization of oxidative C–H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox‐neutral and redox‐green strategies pave the way for establishing new environmentally benign transition‐metal‐catalyzed C–H bond functionalization strategies.  相似文献   

9.
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the “green” process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme′s active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel‐forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer–Villiger oxidation). This Review provides an overview of recent advances in light‐driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.  相似文献   

10.
A concise account on the use of transition metals copper (Cu) and palladium (Pd), as their cations as well as nanoparticles exchanged/immobilized onto porous frameworks such as zeolites, metal organic frameworks (MOFs), covalent organic polymers (COPs) and hollow nanostructures, functioning as catalysts in organic synthesis is presented. This biomimetic account, “focusing on catalytic systems in confinement” within zero‐dimensional microenvironments and second sphere coordination covers primarily results from our group on N‐sulfonylketenimine mediated cycloaddition, hydrogenation and C−C bond forming reactions, thus providing an interesting insight into the versatility and utility of these Cu and Pd catalysts. Other significant advantages and green credentials of confinement such as stability, selectivity, reusability, promotion of multicomponent reactions, use of green solvents, atom economy, and use of ambient conditions are highlighted at appropriate places. In the final section, our views on the current achievements and the future prospects in this area are summarized.  相似文献   

11.
With the recent advances in nanoscience and nanotechnology, more and more nanoparticle catalysts featuring high accessibility of active sites and high surface area have been explored for their use in various chemical transformations, and their rise in popularity among the catalysis community has been unprecedented. The industrial applications of these newly discovered catalysts, however, are hampered because the existing methods for separation and recycling, such as filtration and centrifugation, are generally unsuccessful. These limitations have prompted development of new methods that facilitate separation and recycling of nanoparticle catalysts, so as to meet the burgeoning demands of green and sustainable chemistry. Recently, we have found that Pickering‐emulsion inversion is an appealing strategy with which to realize in situ separation and recycling of nanoparticle catalysts and thereby to establish sustainable catalytic processes. We feel that at such an early stage, this strategy, as an alternative to conventional methods, is conceptually new for readers but that it has potential to become a popular method for green catalysis. This Concept article aims to provide a timely link between previous efforts and both current and future research on nanoparticle catalysts, and is expected to facilitate further investigation into this strategy.  相似文献   

12.
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.  相似文献   

13.
Artificial enzyme mimics are a current research interest, and many nanomaterials have been found to display enzyme‐mimicking activity. However, to the best of our knowledge, there have not hitherto been any reports on the use of pure nanomaterials to construct a system capable of mimicking an enzyme cascade reaction. Herein, we describe the construction of a novel nanocomposite consisting of V2O5 nanowires and gold nanoparticles (AuNPs) through a simple and facile chemical method, in which V2O5 and AuNPs possess intrinsic peroxidase and glucose oxidase (GOx)‐like activity, respectively. Results suggest that this material can mimic the enzyme cascade reaction of horseradish peroxidase (HRP) and GOx. Based on this mechanism, a direct and selective colorimetric method for the detection of glucose has been successfully designed. Because single‐strand and double‐strand DNA (ssDNA and dsDNA) have different deactivating effects on the GOx‐like activity of AuNPs, the sensing of target complementary DNA can also be realized and disease‐associated single‐nucleotide polymorphism of DNA can be easily distinguished. Our study opens a new avenue for the use of nanomaterials in enzyme mimetics, and holds promise for the further exploration of nanomaterials in creating alternative catalytic systems to natural enzymes.  相似文献   

14.
The present Review highlights the challenges and opportunities when using the combination CO2/H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond‐forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical‐based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of “catalytic chess” and maybe even to start playing some games in her or his laboratory.  相似文献   

15.
Metal‐catalyzed chelation‐assisted C?H olefinations have emerged as powerful tools for the construction of functionalized alkenes. Herein, we describe the rhoda‐electrocatalyzed C?H activation/alkenylation of arenes. The olefinations of challenging electron‐poor benzamides were thus accomplished in a fully dehydrogenative fashion under electrochemical conditions, avoiding stoichiometric chemical oxidants, and with H2 as the only byproduct. This versatile alkenylation reaction also features broad substrate scope and used electricity as a green oxidant.  相似文献   

16.
氧化醇为相应的羰基化合物在有机化学基础研究及其工业应用中占有非常重要的地位.在众多关于醇氧化反应的研究中,如何使用对环境友好的氧化剂替代传统的氧化剂,选择具有高性能、廉价、清洁、可回收的催化剂,一直是化学工作者研究的一个热点.综述了近年来该研究领域中的一些重要过渡金属催化体系,并简要介绍了各类催化氧化体系的催化效果.  相似文献   

17.
The field of electrochemical synthesis has developed rapidly over the last decade and has provided alternative synthetic methods with the absence of stoichiometric amounts of chemical oxidants or reductants. Although sustainable electrosynthetic procedures have been developed, relatively few examples of highly enantioselective catalytic electrosynthesis have been reported to date. The development of general strategies for electrochemical enantiocontrol has thus proven to be a considerable challenge. This Minireview highlights the current knowledge and recent advances in the synthetic utility of electrochemical transformations for asymmetric synthesis. Specifically, three major types of catalytic enantioselective strategy in electrosynthesis are outlined, including electrochemical activation of chiral catalyst‐bound substrates, asymmetric cascade electrochemical processes, and chemically modified chiral electrodes.  相似文献   

18.
Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas–liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2‐related research, due to superior mass and heat transfer, reduced axial dispersion, well‐defined gas–liquid interfacial areas and the ability to vary reagent concentrations in a high‐throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2‐related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a “green” solvent.  相似文献   

19.
The conversion of carbon dioxide is vital if we are to avoid the catastrophic consequences that will result from further global temperature rise as a result of burning fossil fuels. Current techniques, such as catalytic conversion and biochemical processes, are each associated with their own drawbacks such as catalyst deactivation and high energy input. Plasma processes are gaining increasing interest as they have the potential to reduce a greater amount of atmospheric environmental pollutants at any one time due to an increased throughput, whilst using a smaller reactor with improved energy efficiency and near-zero emissions. Non-thermal plasma can dissociate stable molecules, such as CO2, at temperatures as low as room temperature. It is this key feature which makes plasma conversion such a promising technology in the conversion and utilisation of CO2. Furthermore, possible products from plasma processes include fuels and chemicals, such as methanol and syngas, which have a high market value; hence potentially making the process feasible on an industrial scale. This paper discusses recent advances in the use of plasma processes for carbon dioxide conversion, along with the future outlook of this technology and the impact these techniques could have on the chemical and energy industries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号