首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

2.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

3.

A convenient method for the syntheses of non‐1‐ynitols 8a8d, by chemoselective addition of (trimethylsilyl)‐propargylmagnesium bromide at the anomeric center of a 1‐unprotected sugar, in the presence of 3‐C′‐halide and 3‐C′‐silyl functions in the side chain is described. In addition, an efficient method for the synthesis of 3‐C′‐hydroxymethyl sugar 3 via the addition of C1 silyl Grignard reagents to ulose 1 and subsequent oxidation by the Fleming‐Tamao method in excellent yields is reported. Also, a suitable acid‐catalyzed isomerization of the 1,2‐O‐isopropylidene group to the 2,3‐O‐isopropylidene group (5a5f), to get access to the anomeric center, in good to excellent yields has been depicted.  相似文献   

4.
The molecules of methyl 3‐(2‐nitrophenylhydrazono)butanoate, C11H13N3O4, (I), and methyl 3‐(2,4‐dinitrophenylhydrazono)butanoate, C11H12N4O6, (II), both prepared from methyl 3‐oxobutanoate and the corresponding nitrophenylhydrazine, exhibit polarized molecular electronic structures; in each of (I) and (II), the molecules are linked into chains by a single C—H...O hydrogen bond. The molecules of 5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazole, C10H10N2O, (III), prepared by the reaction of methyl 3‐oxobutanoate and phenylhydrazine, are linked into chains by a single O—H...N hydrogen bond. The reaction between methyl 3‐oxobutanoate and 3‐nitrophenylhydrazine yields 5‐hydroxy‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazole, (IV), which when crystallized from acetone yields 4‐isopropylidene‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazol‐5(4H)‐one, C13H13N3O3, (V).  相似文献   

5.
A series of four new ferrocene–carbohydrate amides was prepared from pentose and hexose sugar derivatives. These include (5‐amino‐5‐deoxy‐1,2‐O‐isopropylidene‐α‐d ‐xylofuranose)‐1‐ferrocene carboxamide (2a), (5‐amino‐3‐O‐benzyl‐5‐deoxy‐1,2‐O‐isopropylidene‐α‐d ‐xylofuranose)‐1‐ferrocene carboxamide (2b), (methyl‐6‐amino‐6‐deoxy‐2,3‐O‐isopropylidene‐β‐d ‐ribofuranoside)‐1‐ferrocene carboxamide (2c) derived from furanose sugars and (6‐amino‐6‐deoxy‐1,2:3,4‐di‐O‐isopropylidene‐α‐d ‐galactopyranose)‐1‐ferrocene carboxamide (2d) derived from pyranose sugar. The compounds were characterized by spectroscopic means and the structure of amide derived from α‐d ‐xylofuranose (2a) was determined by X‐ray crystallography. The electronic and optical properties of the compounds were studied by means of cyclic voltammetry and absorption spectroscopy. The UV and electrochemical studies of these compounds, performed in aqueous solutions under physiological conditions (at pH 7.4), confirmed their stability. These results indicated that the compounds were suitable for conducting biological studies. The CD spectral analysis displays the effect of sugar substituents on the compounds. The cytotoxicity and antimicrobial activity of these conjugates were investigated on different cancer cell lines and microbes respectively. The degree of inhibition varied over a broad spectrum of Gram‐ positive and Gram‐negative bacteria. In addition, the compounds also exhibited antioxidant properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Novel polycarbonates, with pendant functional groups, based on 1,4:3,6‐dianhydrohexitols and L ‐tartaric acid derivatives were synthesized. Solution polycondensations of 1,4:3,6‐dianhydro‐bis‐O‐(p‐nitrophenoxycarbonyl)hexitols and 2,3‐di‐O‐methyl‐L ‐threitol or 2,3‐O‐isopropylidene‐L ‐threitol afforded polycarbonates having pendant methoxy or isopropylidene groups, respectively, with number average molecular weight (Mn) values up to 3.61 × 104. Subsequent acid‐catalyzed deprotection of isopropylidene groups gave well‐defined polycarbonates having pendant hydroxyl groups regularly distributed along the polymer chain. Differential scanning calorimetry (DSC) demonstrated that all the polycarbonates were amorphous with glass transition temperatures ranging from 57 to 98 °C. Degradability of the polycarbonates was assessed by hydrolysis test in phosphate buffer solution at 37 °C and by biochemical oxygen demand (BOD) measurements in an activated sludge at 25 °C. In both tests, the polycarbonates with pendant hydroxyl groups were degraded much faster than the polycarbonates with pendant methoxy and isopropylidene groups. It is noteworthy that degradation of the polycarbonates with pendant hydroxyl groups was remarkably fast. They were completely degraded within only 150 min in a phosphate buffer solution and their BOD‐biodegradability reached nearly 70% in an activated sludge after 28 days. The degradation behavior of the polycarbonates is discussed in terms of their chemical and physical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3909–3919, 2005  相似文献   

7.
3‐O‐Benzyl‐6‐deoxy‐1,2‐O‐isopropylidene‐α‐dxylo‐hept‐5‐ulofuranurononitrile (1) was reacted with N,N‐dimethylformamide dimethylacetal in tetrahydrofuran to furnish the (E)‐3‐O‐benzyl‐6‐deoxy‐6‐dimethylaminomethylene‐1,2‐O‐isopropylidene‐α‐dxylo‐hept‐5‐ulofuranurononitrile (2) as a major product. Furthermore, treatment of compound 1 with carbon disulphide and methyl iodide under basic conditions afforded 3‐O‐benzyl‐6‐deoxy‐1,2‐O‐isopropylidene‐6‐[bis(methylsulfanyl)methylene]‐α‐dxylo‐hept‐5‐ulofuranurononitrile (6). Reaction of 2 and 6 with hydrazines yielded the “reversed” pyrazole‐C‐nucleoside analogs 4, 5a, 5b, 7, 8, and 9, respectively.  相似文献   

8.
A stereospecific synthesis of (2S)3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol from D ‐mannitol has been developed. The reaction of 2,3‐O‐isopropylidene‐D ‐glyceraldehyde with 2,4,5‐trifluorophenylmagnesium bromide gave [(4R)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl](2,4,5‐trifluorophenyl)methanol in 65% yield as a mixture of diastereoisomers (1 : 1). The Ph3P catalyzed reaction of the latter with C2Cl6 followed by reduction with Pd/C‐catalyzed hydrogenation gave (2S)‐3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol with >99% ee and 65% yield.  相似文献   

9.
New syntheses of C(2′)‐deuterated ribonucleosides have been accomplished starting either from 3,5‐di‐O‐benzyl‐1‐O‐methyl‐α,β‐D ‐ribofuranose ( 1b ) or 2,3‐O‐isopropylidene‐D ‐ribose ( 14 ), with >97 atom‐% D incorporation in both cases. The former is suited to the demands of multiple‐site deuteration or uniform 13C/multiple 2H double labeling of the ribofuranose moiety, whereas the latter is particularly appropriate for single‐site 2H labeling for mechanistic studies of enzyme reactions.  相似文献   

10.
We describe the preparation and spectroscopic properties of a novel class of nucleoside analogues in which a phenyl sulfonyl methylene group is attached to the 1′‐carbon atom of P‐D‐ribofuranose. The glyco‐sylation of 5‐O‐(tert‐butyldiphenylsilyl)‐2,3‐O‐isopropylidene‐D‐ribofuranolactone lb with phenyl methyl‐lithium sulfone in THF at ?60° C afforded 5‐O‐(tert‐butyldiphenylsilyl)‐1′‐(benzenesulfonylmethylene)‐2′,3′‐O‐isopropylidene‐α‐D‐ribofuranose 2b . When subjected to deoxydative reaction conditions with boron trifluoride etherate in the presence of triethylsilane at ?45° C, lactol 2b was converted into 2′,3′‐O‐isopro‐pylidene‐1′‐deoxy‐1′‐(benzenesulfonylmethylene)‐β‐D‐ribofuranose 4b with excellent stereocontrol over the anomeric carbon in moderate yield. This method has the potential for the development of a wider array of useful probes derived from 1′‐deoxy‐β‐D‐ribofuranose for nucleic acid research and for antisense therapeutic agents through further functionalization of the coupled sulfonyl group.  相似文献   

11.

Treatment of 1,2‐dideoxy‐4,5:6,7‐di‐O‐isopropylidene‐Dxylo‐hept‐1‐yn‐3‐uloses 4a,b with hydrazine hydrate and amidines yielded the 3‐(1,2:3,4‐di‐O‐isopropylidene‐Dxylo‐1,2,3,4‐tetrahydroxy‐butyl)‐5‐phenyl‐1H(2H)‐pyrazole 5 and the substituted 4‐(1,2:3,4‐di‐O‐isopropylidene‐Dxylo‐1,2,3,4‐tetrahydroxy‐butyl)pyrimidines 7a–f, respectively. Reaction of 4a,b with 2‐amino‐benzimidazol afforded the 2‐(1,2:3,4‐di‐O‐isopropylidene‐Dxylo‐1,2,3,4‐tetrahydroxy‐butyl)benzo[4,5]imidazo[1,2‐a]pyrimidines 9a,b. Compound 4a and 5‐amino‐pyrazole‐4‐carbonic acid derivatives yielded the 5‐(1,2:3,4‐di‐O‐isopropylidene‐Dxylo‐1,2,3,4‐tetrahydroxy‐butyl)pyrazolo[1,5‐a]pyrimidines 11a–d. Deprotection of pyrazole 5, pyrimidine 7a, and pyrazolo[1,5‐a]pyrimidine 11b yielded the acyclo‐C‐nucleosides 6, 8, and 12, respectively.  相似文献   

12.
Abstract

Starting with 3,4‐O‐[(R)‐2,2,2‐trichloroethylidene]‐1,2‐O‐isopropylidene‐β‐D‐tagatopyranose 2 obtained from 1,2‐O‐isopropylidene‐β‐D‐fructopyranose 1 by a non‐classical one‐step acetalization with chloral/DCC, the fluoroalkylated glycosyl donors 15 and 17 were synthesised in 3–4 steps. By this sequence, one stereogenic center was inverted, one new chiral center was introduced, and one stereogenic center, for the time being eliminated, was later re‐introduced. The glycals 11 and 12, key intermediates of the synthesis sequence, were accessible from triflate precursors (e.g., 10) by treatment with DBU. Corresponding halogeno‐(6, 7), tosyl‐(5, 8), or mesyl‐(9) precursors were unsuitable. The stereoselective introduction of a chlorodifluoromethyl group was realised by dithionite‐mediated CF2ClBr‐addition to the glycal double bond. Subsequently, either the chlorodifluoromethylated glycosyl bromide (13) or the corresponding pyranoses (14 and 16) were isolated. The latter were still acetylated to the 1‐O‐acetyl derivatives 15 and 17, respectively. An x‐ray analysis is given for the 5‐O‐tosylate 8.  相似文献   

13.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

14.
Our approach to achieve a partial synthesis of methanopterin ( 1 ) started from 6‐acetyl‐O4‐isopropyl‐7‐methylpterin ( 20 ) which was obtained either by condensation from 6‐isopropoxypyrimidine‐2,4,5‐triamine ( 19 ) and pentane‐2,3,4‐trione ( 6 ) or from 6‐isopropoxy‐5‐nitrosopyrimidine‐2,4‐diamine ( 21 ) and pentane‐2,4‐dione (=acetylacetone; 22 ) (Scheme 2). NaBH4 reduction of 20 led to 6‐(1‐hydroxyethyl)‐O4‐isopropyl‐7‐methylpterin ( 23 ) which was converted into the corresponding 6‐(1‐chloroethyl) and 6‐(1‐bromoethyl) derivatives 24 and 25 . A series of nucleophilic displacement reactions in the side chain and at position 4 were performed as model reactions to give 26 – 29, 32 – 35 , and 39 – 41 . Hydrolysis of the substituents at C(4) led to the corresponding pterin derivatives 30, 31, 36 – 38 , and 42 . Analogously, 25 reacted with 1‐(4‐aminophenyl)‐1‐deoxy‐2,3: 4,5‐di‐O‐isopropylidene‐D ‐ribitol ( 43 ), prepared from N‐(4‐bromophenyl)benzamide ( 47 ) via 49 and 50 to give 1‐{4‐{{1‐[2‐amino‐7‐methyl‐4‐(1‐methylethoxy)pteridin‐6‐yl]ethyl}amino}phenyl}‐1‐deoxy‐D ‐ribitol ( 44 ) in 62% yield (Scheme 3). Acid cleavage of the isopropylidene groups at room temperature led to 45 and on boiling to 1‐{4‐{[1‐(2‐amino‐3,4‐dihydro‐7‐methyl‐4‐oxopteridin‐6‐yl)ethyl]amino}phenyl}‐1‐deoxy‐D ‐ribitol ( 46 ). The next step, however, attachment of the ribofuranosyl moiety with 55 or 56 to the terminal 1‐deoxy‐D ‐ribitol OH group could not been achieved. The second component, bis(4‐nitrobenzyl) 2‐{[(2‐cyanoethoxy)(diisopropylamino)phosphino]oxy}pentanedioate ( 61 ), to built‐up methanopterin ( 1 ) was synthesized from 2‐hydroxypentanedioic acid ( 59 ) and worked well in another model reaction on phosphitylation with N6‐benzoyl‐2′,3′‐O‐isopropylideneadenosine and oxidation to give 62 (Scheme 6).  相似文献   

15.
New styryl‐type water‐insoluble and methacryloyl‐type water‐soluble monomers, N‐(p‐vinylbenzyl)‐1,2‐O‐isopropylidene‐6‐D ‐glucofuranuronamide and N‐(2‐methacryloylamino)ethyl‐1,2‐O‐isopropylidene‐6‐D ‐glucofuranuronamide, were synthesized from the most common acidic saccharide, D ‐glucuronic acid. Their radical homopolymerizations and copolymerizations with styrene and acrylamide were tried under various conditions. The isopropylidene groups in the resulting polymers were removed in a mixture of trifluoroacetic acid and water (2/1 v/v) to give the corresponding polymers with many pendant D ‐glucopyranuronyl groups with reactive reducing groups. The pendant reducing ends may be useful as potential binding sites under a hydrophilic atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3893–3901, 2001  相似文献   

16.
李红明  杨敏  赵刚  俞庆森  丁渝 《中国化学》2000,18(3):388-394
8,9-Dimethoxy-7-epi-goniopypyrone, an analog of ( )-go-niopypyrone, was synthesized from 3-O-benzyl-1, 2-O-iso-propylidene-5-C-phenyl-α-D-gluco-pentofuranose (3).  相似文献   

17.
A simple and effective synthetic route to homo‐ and heteroleptic rare‐earth (Ln = Y, La and Nd) complexes with a tridentate Schiff base anion has been demonstrated using exchange reactions of rare‐earth chlorides with in‐situ‐generated sodium (E)‐2‐{[(2‐methoxyphenyl)imino]methyl}phenoxide in different molar ratios in absolute methanol. Five crystal structures have been determined and studied, namely tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)lanthanum, [La(C14H12NO2)3], ( 1 ), tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)neodymium tetrahydrofuran disolvate, [La(C14H12NO2)3]·2C4H8O, ( 2 )·2THF, tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐κ3O1,N,O23O1,N,O22N,O1‐yttrium, [Y(C14H12NO2)3], ( 3 ), dichlorido‐1κCl,2κCl‐μ‐methanolato‐1:2κ2O:O‐methanol‐2κO‐(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐1κ3O1,N,O2;2κ3O1,N,O2‐diyttrium–tetrahydrofuran–methanol (1/1/1), [Y2(C14H12NO2)3(CH3O)Cl2(CH4O)]·CH4O·C4H8O, ( 4 )·MeOH·THF, and bis(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐2κ3O1,N,O2)sodiumyttrium chloroform disolvate, [NaY(C14H12NO2)4]·2CHCl3, ( 5 )·2CHCl3. Structural peculiarities of homoleptic tris(iminophenoxide)s ( 1 )–( 3 ), binuclear tris(iminophenoxide) ( 4 ) and homoleptic ate tetrakis(iminophenoxide) ( 5 ) are discussed. The nonflat Schiff base ligand displays μ2‐κ3O1,N,O2O1 bridging, and κ3O1,N,O2 and κ2N,O1 terminal coordination modes, depending on steric congestion, which in turn depends on the ionic radii of the rare‐earth metals and the number of coordinated ligands. It has been demonstrated that interligand dihedral angles of the phenoxide ligand are convenient for comparing steric hindrance in complexes. ( 4 )·MeOH has a flat Y2O2 rhomboid core and exhibits both inter‐ and intramolecular MeO—H…Cl hydrogen bonding. Catalytic systems based on complexes ( 1 )–( 3 ) and ( 5 ) have demonstrated medium catalytic performance in acrylonitrile polymerization, providing polyacrylonitrile samples with narrow polydispersity.  相似文献   

18.
Fluorine‐19 (19F)‐based contrast agents are increasingly used for magnetic resonance imaging. Conjugated to polymers, they provide an excellent quantitative imaging tool to detect the movement of the polymeric nanoparticles in vivo as there is no background signal in tissue. One of the challenges is the decline in signal intensity when the conjugated hydrophobic fluorinated functionalities aggregate. Therefore, a new fluorinated monomer was prepared from l ‐arginine that carries a 2,2,2‐trifluoroethyl functional group for imaging. The resulting monomer, 2,2,2‐trifluoroethylamide l ‐arginine methacrylamide (3FArgMA), was copolymerized with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), [2‐(2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranosyloxy)ethyl methacrylate or 1‐O‐methacryloyl‐2,3:4,5‐di‐O‐isopropylidene‐β‐d ‐fructopyranose, respectively, using poly(methyl methacrylate) macro‐reversible addition–fragmentation chain transfer polymerization agent. The resulting block copolymers, which varied in 3FArgMA content, were self‐assembled into micelles of hydrodynamic diameters from 25 to 60 nm. The permanently positively charged arginine functionality on the 3FArgMA displayed repulsive forces against aggregation enabling high spin–spin relaxation times (T2) in acidic as well as alkaline solutions. However, the longer poly(ethylene glycol) side functionality in PEGMEMA enabled better steric stabilization (T2~30 ms) while the short fructose side chain was not enough to maintain high T2 values, in particular when a higher 3FArgMA content was used. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1994–2001  相似文献   

19.
Five new C19‐diterpenoid alkaloids, named hemsleyaconitines A–E ( 1 – 5 , resp.), were isolated from Aconitum hemsleyanum Pritz. By UV, IR, MS, 1D‐ and 2D‐NMR analyses, their structures were elucidated as 18‐dehydroxygeniculatine D ( 1 ), 6‐hydroxy‐14‐O‐veratroylneoline ( 2 ), 14‐O‐acetyl‐8‐ethoxysachaconitine ( 3 ), 18‐veratroylkaracoline ( 4 ) and 8‐O‐ethylaustroconitine B ( 5 ).  相似文献   

20.
New polyurethanes with lactone groups in the pendants and main chains were synthesized by the polyaddition of two kinds of L ‐gulonolactone‐derived diols (2,3‐O‐isopropylidene‐L ‐gulono‐1,4‐lactone and 5,6‐O‐isopropylidene‐L ‐gulono‐1,4‐lactone) with hexamethylene diisocyanate and methyl (S)‐2,6‐diisocyanatohexanoate and by the subsequent deprotection of isopropylidene groups. They were hydrolyzed more quickly than the polyurethane derived from methyl β‐D ‐glucofuranosidurono‐6,3‐lactone in a phosphate buffer solution, the pH value of which was 8.0, at 27 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4158–4166, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号