首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The photopolymerization of diallylidene pentaerythritol (DAPE) was carried out in benzene at 40°C without the use of the usual initiator. DAPE was polymerized with the ester radical generated from DAPE by photoirradiation. To investigate the effect of dimethyl groups at the α,α- or β,β-positions of vinyl groups on the polymerization, photopolymerizations of dimethallylidene pentaerythritol (DMPE) and dicrotylidene pentaerythritol (DCPE) were carried out and kinetically studied from the standpoint of the degradative chain transfer by the allylidene group and cyclization by two double bonds. The results can be summarized as follows: (1) The relation between the rate of polymerization, Rp, and the monomer concentration [M] can be expressed as [M]/Rp = (A[M] + B)/(2[M] + C), where A, B, and C are constants. (2) The ratios of the rate constant of unimolecular cyclization to the total rate constants of bimolecular propagation and the chain transfer of uncyclized radical were estimated as 1.12, 0.26, and 0.16 mole dm?3 for DAPE, DMPE, and DCPE, respectively; the cyclizations hardly took place. (3) The rate of polymerization and the molecular weight of the polymer were small because of the degradative chain transfer by the allylidene group.  相似文献   

2.
A method is proposed for analysing the problems associated with non-ideal polymerizations reflected mainly in the variability of Rp/[I]0·5[M] where Rp is the rate of polymerization and [I] and [M] are the initiator and monomer concentrations, respectively. Primary radical termination and degradative chain transfer are treated jointly and the entirely different mathematical natures of the two processes are described. The method could dispense with the need to use the uninhibited rate of polymerization which does not lend itself to reliable measurements for many systems. It is found to be efficient in detecting the active species in a polymerization system that leads to non-ideality due to degradative chain transfer.This method is applied to vinyl chloride polymerization data from the literature, the values of constants obtained therefrom are found to agree well with the existing values.  相似文献   

3.
The kinetics of aqueous polymerization of the symmetrical nonconjugated divinyl monomer N,N′-methylenebis(acrylamide) (MBA), was studied at 35°C and at constant ionic strength under nitrogen atmosphere involving potassium peroxydiphosphate (PDP) as oxidant with three different activators thiolactic acid (TLA), thiomalic acid (TMA), and thioglycollic acid (TGA). The rate of polymerization, RP, and rate of disappearance of peroxydiphosphate, –RPDP have been followed while polymerization was initiated separately by the PDP–TLA/PDP–TMA/PDP–TGA redox systems. RP for the above three systems showed first-order dependences on both [monomer] and [activator] and zero-order dependence on [PDP]. First-order dependence on [PDP] and zero-order dependences on [monomer] and [activators] were observed with respect to –RPDP in the above three systems. A reaction mechanism which involves complex formation between PDP and thiocarboxylic acid, propagation through intramolecular–intermolecular reactions, degradative chain transfer reaction of the growing radical with PDP, and linear termination by the interaction of the chain radical with primary radical was proposed. The kinetic parameters for the three polymerization systems were calculated and compared. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 11–20, 1998  相似文献   

4.
The radical polymerization of tetraallyl ammonium chloride (TAAC) was carried out in water using azo-initiator as compared to that of diallyl dimethyl ammonium chloride (DADMAC); the rate of polymerization was quite low for TAAC, around one-third of DADMAC. Kinetic discussion revealed the importance of degradative chain transfer in the polymerization of TAAC. The cyclopolymerizability of TAAC was estimated kinetically as the ability of 5-membered monocyclic radical to form a bicyclic ring, giving the cyclization constant of 21 mol/L at [M] = 2 mol/L. Gelation occurred at around 20% conversion.  相似文献   

5.
β-Picolinium-p-chlorophenacylide initiates radical polymerization of methyl acrylate (MA) up to 19.5% conversion without gelation due to autoacceleration. The average rate of polymerization (Rp) increases as [ylide] is raised from 1.02 to 3.06 mmol/L, the order of reaction being 0.5 ± 0.02. However, at higher concentrations (>3.06 mmol/L), Rp decreases. The monomer exponent is 1.40 when benzene is used as diluent. The overall energy of activation is computed to be 28.8 kJ/mol. A polar solvent like dimethyl-sulfoxide and a radical scavenger like hydroquinone retard the reaction. The kinetic data and ESR studies indicate that the polymerization proceeds via a free-radical mechanism. Chain termination by degradative chain (initiator) transfer appears to be significant.  相似文献   

6.
The aqueous polymerization of MMA was studied kinetically at 40° C using low concentrations of Py-SO2 complex as initiator. For [Py-SO2] < 2 × 10?2 mol/L, Rp ∞ [PY-SO2]0.5 [M]1.5, and for [Py-SO2] > 2 × 10?2 mol/L, Rp ∞ [Py-SO2]0,0[M]1.08. Polymerization is considered to proceed by a radical mechanism. The radical generation or the initiation step is believed to proceed through equilibrium complexation between the Py-SO2 complex and monomer molecules. For [Py-SO2] < 2 × 10?2 mol/L, the polymerization is characterized by bimolecular termination. Above this [Py-SO2], chain termination by a degradative initiator transfer process assumes prominence.  相似文献   

7.
Vinyl thiocyanatoacetate (VTCA) was synthesized, and its radical polymerization behavior was studied in acetone with dimethyl 2,2′‐azobisisobutyrate (MAIB) as an initiator. The initial polymerization rate (Rp) at 60 °C was expressed by Rp = k[MAIB]0.6±0.1 [VTCA]1.0±0.1 where k is a rate constant. The overall activation energy of the polymerization was 112 kJ/mol. The number‐average molecular weights of the resulting poly (VTCA)s (1.4–1.6 × 104) were almost independent of the concentrations of the initiator and monomer, indicating chain transfer to the monomer. The chain‐transfer constant to the monomer was estimated to be 9.6 × 10?3 at 60 °C. According to the 1H and 13C NMR spectra of poly (VTCA), the radical polymerization of VTCA proceeded through normal vinyl addition and intramolecular transfer of the cyano group. The cyano group transfer became progressively more important with decreasing monomer concentration. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 573–582, 2002; DOI 10.1002/pola.10137  相似文献   

8.
Abstract

The chain transfer constant of the polymethyl methacrylate radical for N,N-dimethylaniline was determined in two solvents, benzene and dimethyl phthalate. Plots were made using1/Pn=kt°Rp/kp 2[M]2η + CS1 [S1]/[M] + CS2 [S2]/[M] +CM where η=viscosity of monomer-solvents mixture, kt°=rate coefficient of termination when η=1 cP, S1=benzene or dimethyl phthalate, S2=N,N-dimethylaniline, and other symbols have their usual meanings. The plots agreed well for the two solvents. If the plots were made without considering the viscosity term, two separate lines resulted for the two solvents. Thus it is essential to consider the viscosity of the polymerizing system in the analysis of chain transfer reactions when the termination reaction is diffusion-controlled and the viscosities of the monomer and solvent differ markedly.  相似文献   

9.
A kinetic study of radical polymerization of vinyl mercaptobenzothiazole (VMBT) with α,α′-azobisisobutyonitrile (AIBN) at 60°C was carried out. The rate of polymerization (Rp) was found to be expressed by the rate equation: Rp = k[AIBN]0.5 [VMBT]1.0, indicating that the polymerization of this monomer proceeds via an ordinary radical mechanism. The apparent activation energy for overall polymerization was calculated to be 20.9 kcal/mole. Moreover, this monomer was copolymerized with methyl methacrylate, acrylonitrile, vinyl acetate, phenyl vinyl sulfide, maleic anhydride, and fumaronitrile at 60°C. From the results obtained, the copolymerization parameters were determined and discussed.  相似文献   

10.
Photopolymerization of methyl methacrylate was studied at 40° using dimethylaniline (DMA)—nitrobenzene (NB) C.T. complex as photoinitiator. Rp is proportional to ([DMA] [NB])0.24 and [M]1.0. Initiation of polymerization takes place through radicals generated by photodecomposition of DMA—NB complex formed in situ. Evidence for incorporation of N-methylanilonomethyl end-groups in the polymers was obtained by u.v. spectral analysis. The nonideal kinetics are explained in terms of significant participation of the initiating species in chain termination via degradative chain transfer.  相似文献   

11.
Allyl methacrylate has been polymerized by free-radical methods and found to yield a soluble polymer in carbon tetrachloride, dioxane, and diallyl ether solutions. The overall rate equation in diallyl ether is Rp = k[ln]0.7[M]1.6. It is suggested that propagation and cyclization reactions proceed only via addition to the methacrylyl groups of the monomer. Some degradative chain transfer occurs with the allyl groups, and it is considered that the solvents may ensure the production of soluble polymers by reactions in which allyl–radical side chains are terminated without crosslinking.  相似文献   

12.
The photopolymerization of styrene in presence of an efficient, eco-friendly, and a cost-effective photoinitiator, curcumin, which is found in turmeric root, has been reported for the first time. The catalytic concentration (10−6 M) of curcumin is effective to photoinitiate the polymerization of styrene. The kinetic data, inhibiting effect of benzoquinone and electron spin resonance studies, indicate that the polymerization proceeds via a free radical mechanism. The system follows non-ideal kinetics (R p ∝ [Cur]0.36 [Sty]1.04) due to both primary radical termination and degradative chain transfer reactions. The broad peaks due to methine and methylene protons in 1H-NMR (nuclear magnetic resonance [NMR]) spectrum and a band of resonances at 145–146 ppm in 13C-NMR indicate atactic nature of the polystyrene formed. The maximum conversion at 30 ± 0.2 °C in 17 h has been limited to 23% without gelation. The formation of radicals and mechanism of polymerization are also discussed.  相似文献   

13.
Radical polymerization studies on diallyl oxalate (DAO), diallyl malonate (DAM), diallyl succinate (DASu), diallyl adipate (DAA), and diallyl sebacate (DAS) have been conducted kinetically from the standpoint of cyclopolymerization. Benzoyl peroxide was employed as the initiator. The initial overall rate of polymerization, Rp was not proportional to the square root or the first power of the initiator concentration, [I]. But Rp/[I]1/2 and [I]1/2 bore a linear relationship, provided the monomer concentration was kept constant. The residual unsaturation of the polymers decreased with decreasing monomer concentration. The ratio of the rate constant of the unimolecular cyclization reaction to that of the bimolecular propagation reaction of the uncyclized radical, Kc, was evaluated from the above relationship between the residual unsaturation and the monomer concentration at 60°C. The Kc values obtained were 3.6, 3.2, 2.8, 2.5, and 1.2 mole/l. for DAO, DAM, DASu, DAA, and DAS, respectively. The overall activation energies of polymerization were found to be 21.1 (DAO), 24.2 (DAM), 21.7 (DASu), 22.0 (DAA), and 22.2 (DAS) kcal/mole.  相似文献   

14.
Vinyl acetate was polymerized in bulk and in benzene at 50°C using a wide range of concentrations of azobisisobutyronitrile. Values of fk (the efficiency of initiator) and kprt/kikp (the characteristic constant of primary radical termination) were found to be 0.53 and 2.00 × 104 respectively from data for bulk polymerization. In solution polymerization, the initiator exponent is a function of initiator concentration ranging from 0.35 at high concentration to- about 0.65 at low concentration. This result has been explained on the basis of degradative chain transfer to solvent and primary radical termination. The results have been treated according to mathematical formulations already developed; the characteristic constant of degradative chain transfer and the transfer constant of the solvent have been determined. The results have been compared with literature values and discrepancies explained.  相似文献   

15.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

16.
Triphenylbismuthonium 1,2,3,4‐tetraphenylcyclopentadienylide in 1,4‐dioxan initiated radical polymerization of methyl acrylate to ~30% conversion without gelation because of autoacceleration. The polymer had a viscosity‐average molecular weight of 200,000. The kinetic expression was Rpα[I]0.3[M]1.16, that is, the system followed nonideal kinetics because of primary radical termination and degradative chain‐transfer reactions. The values of kkt and the energy of activation were computed as 3.12 × 10?5 Lmol?1s?1 and 28 kJ/mol, respectively. The ylide dissociated to form a phenyl radical, which brought about polymerization of methyl acrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2060–2065, 2004  相似文献   

17.
The polymerization of acrylonitrile (AN) initiated by oxygen-ascorbic acid (AA)-ferric ion system was studied in dil. HNO3 at 40°. The rate of polymerization, Rp, was found gravimetrically. In the [Fe3+] range, (2–5 × 10?5 M, Rp was proportional to [AN]1.5 ± 0.05, [O2]0.5 ± 0.02 [AA]0 and [Fe3+]0; for [Fe3+] = (5–30) × 10?5 M, it was proportional to [AN]1.8 ± 0.05, [O2]0.6 ± 0.02, [AA]0 and [Fe3+]?0.9 ± 0.05. A plausible reaction scheme is proposed and rate law presented to explain these results. Rp increased with ionic strength and [HNO3] (up to ~0.25 M). An initial rate increase with temperature followed by a decrease was noticed. Chain lengths of the polymers were determined viscometrically.  相似文献   

18.
Kinetic studies were carried out on the polymerization of tetrahydrofuran with catalyst systems of aluminum alkyl–epichlorohydrin. As aluminium alkyl species AlEt3, AlEt3–H2O (1:0.1 to 1:1.0), and “oxyaluminum ethyl” were employed. The polymerizations with these catalysts are characterized by a mechanism of stepwise addition without chain transfer or termination, which is expressed by the kinetic relation Rp = Kp[P*] ([M]–[M]e), where [M] and [M]e are the instantaneous and equilibrium concentrations of monomer and [P*] is the concentration of propagating species calculated from the amount and molecular weight of the product polymer. The determination of the rate constant kp for these catalysts has shown that the polymerization rate varied considerably with the change of aluminum alkyl species, i.e., with the water-to-aluminum ratio, but the propagation rate constant itself varied very little. The variation of polymerization rate was, therefore, attributed primarily to the differences in concentration of the propagating species, i.e. the efficiency of the catalyst in forming propagating species. The catalyst efficiency was closely related to the acid strength of the aluminum alkyl species, which was estimated from the magnitude of shift of the xanthone carbonyl band in the infrared spectrum of its coordination complex with aluminum alkyl. The maximal catalyst efficiency was attained at about [H2O]/[AlEt3] = 0.75.  相似文献   

19.
The polymerization of styrene (St) in benzene solution in the presence of 1,3-dioxane (DON), 1,3-dioxepane (DOP), trioxane (TRON), or tetraoxane (TEON) by means of photoirradiation of the system at 40°C has been studied kinetically from the standpoint of photosensitized polymerization. The rate of photosensitized polymerization Rp increased in the order: DOP < DON < TRON < TEON, as shown by the rate constant of decomposition of cyclic acetals, and then could be expressed by Rp = k[monocyclic acetal]0.5[St]1.0. The polymerization was confirmed to proceed via a radical mechanism.  相似文献   

20.
2-Mercaptobenzothiazolyl methacrylate (MBTM) was synthesized by the reaction of 2-mercaptobenzothiazole and methacrylyl chloride in tetrahydrofuran at -18°C. MBTM was found to polymerize in the presence of 2,2′-azobisisobutyronitrile (AIBN), n-BuLi, and UV light. From the kinetic studies of radical polymerization of MBTM with AIBN in benzene at 60°C, the overall activation energy was determined to be 18.9 kcal/mole, and the rate of polymerization (R) was expressed as Rp = k[AIBN]0.5 [MBTM], where k is the overall polymerization rate constant. From these results this polymerization was confirmed to proceed via an ordinary radical mechanism. This monomer (M2) was also copolymerized radically with styrene (M1) at 60°C, and the resulting copolymerization parameters were determined as r1 = 0.042, r2 = 0.20, Q2 = 4.09, and e2 = 1.39. The thermal stability and the photodegradation behavior of the polymers were examined, and they were compared with those of the related polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号