首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

7.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

8.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
Rational construction of low-cost, efficient, and durable electrocatalysts for the hydrogen evolution reaction(HER) is essential to further develop water electrolysis industry. Inspired by the natural enzyme catalysis with coordination environments of catalytic sites and three-dimensional structures, we construct an efficient Ru-based catalyst anchored on the nitrogen dopant on graphene aerogel(Ru-NGA). The Ru-NGA catalyst exhibits dramatically improved electroactivity and stability towards HER with a near-zero onset overpotential, a low Tafel slope of 32 mV/dec, and a high turnover frequency of 5.5 s-1 at -100 mV. The results show that the electronic modulation of metallic Ru nanoparticles by nitrogen coordination weakens the affinity of Ru towards H and hence facilitates the desorption of hydrogen. This research provides in-depth insights into the fundamental relationship between metallic nanostructure and HER activity, and also guides the rational design of high-performance electrocatalysts in energy conversion.  相似文献   

12.
双原子位点M-N-C催化剂是催化CO2还原反应(CO2RR)性能最佳的催化剂之一. 然而, 目前的研究主要集中于M-N-C活性中心原子类型的调控, 低估了活性位点的配位模式及分布对其催化性能的影响. 本文选取典型的双原子位点M-N-C催化剂(NiFe-N-C)为研究对象, 采用密度泛函理论方法探究了9种活性位点具有不同配位环境的NiFe-N-C催化剂电催化CO2RR的反应机理. 结果表明, 随着金属原子配位数、 双原子位点间距离的增加, M-N-C催化剂的稳定性、 催化CO2还原至CO的活性及抑制氢析出反应的选择性均呈现先升高后下降的趋势. 其中, 金属原子四配位且对称分布的NiFe-N-C-model 3催化剂, 因其双原子位点的强相互作用表现出最优的催化性能.  相似文献   

13.
The rational design and effective construction of precious-metal-free materials for OER and ORR, respectively, are reviewed in the respects of electronic structure regulation, nanostructure tailor, and freestanding electrode fabrication. This affords fresh concepts for oxygen electrocatalysis and is also enlightening for other energy catalysis with targeted optimization.  相似文献   

14.
Following our previous findings that confinement within carbon nanotubes (CNTs) can modify the redox properties of encapsulated iron oxides, we demonstrate here how this can affect the catalytic reactivity of iron catalysts in Fischer-Tropsch synthesis (FTS). The investigation, using in situ XRD under conditions close to the reaction conditions, reveals that the distribution of iron carbide and oxide phases is modulated in the CNT-confined system. The iron species encapsulated inside CNTs prefer to exist in a more reduced state, tending to form more iron carbides under the reaction conditions, which have been recognized to be essential to obtain high FTS activity. The relative ratio of the integral XRD peaks of iron carbide (Fe(x)C(y)) to oxide (FeO) is about 4.7 for the encapsulated iron catalyst in comparison to 2.4 for the iron catalyst dispersed on the outer walls of CNTs under the same conditions. This causes a remarkable modification of the catalytic performance. The yield of C5+ hydrocarbons over the encapsulated iron catalyst is twice that over iron catalyst outside CNTs and more than 6 times that over activated-carbon-supported iron catalyst. The catalytic activity enhancement is attributed to the effect of confinement of the iron catalyst within the CNT channels. As demonstrated by temperature-programmed reduction in H2 and in CO atmospheres, the reducibility of the iron species is significantly improved when they are confined. The ability to modify the redox properties via confinement in CNTs is expected to be of significance for many catalytic reactions, which are highly dependent on the redox state of the active components. Furthermore, diffusion and aggregation of the iron species through the reduction and reaction have been observed, but these are retarded inside CNTs due to the spatial restriction of the channels.  相似文献   

15.
Confinement of noble nanometals in a zeolite matrix is a promising way to special types of catalysts that show significant advantages in size control, site adjustment, and nano‐architecture design. The beauty of zeolite‐confined noble metals lies in their unique confinement effects on a molecular scale, and thus enables spatially confined catalysis akin to enzyme catalysis. In this Minireview, the confined synthesis strategies of zeolite‐confined noble metals will be briefly discussed, showing the processes, advantages, features, and mechanisms. The confined catalysis carried on zeolite‐confined noble metals will be summarized, and great emphasis will be paid to the confinement effects involving size, encapsulation, recognition, and synergy. Great progress of atomic sites in the size effect, supercage stabilization in the encapsulation effect, site adsorption in the recognition effect, and cascade reaction in the synergy effect are highlighted. This Minireview is concluded with challenges and opportunities in terms of the synthesis of zeolite‐confined noble metals and their applications to design multifunctional catalysts with high catalytic activity, selectivity, and stability.  相似文献   

16.
Highly active and durable electrocatalysts for the oxygen evolution reaction (OER) is greatly desired. Iridium oxide/graphitic carbon nitride (IrO2/GCN) heterostructures are designed with low‐coordinate IrO2 nanoparticles (NPs) confined on superhydrophilic highly stable GCN nanosheets for efficient acidic OER. The GCN nanosheets not only ensure the homogeneous distribution and confinement of IrO2 NPs but also endows the heterostructured catalyst system with a superhydrophilic surface, which can maximize the exposure of active sites and promotes mass diffusion. The coordination number of Ir atoms is decreased owing to the strong interaction between IrO2 and GCN, leading to lattice strain and increment of electron density around Ir sites and hence modulating the attachment between the catalyst and reaction intermediates. The optimized IrO2/GCN heterostructure delivers not only by far the highest mass activity among the reported IrO2‐based catalysts but also decent durability.  相似文献   

17.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

18.
过去十年见证了单原子催化领域的快速发展,其最高的原子利用效率和充分暴露的活性位点使得单原子催化剂对众多反应的催化活性具有显著提升。在单原子催化领域的早期发展阶段,研究者只是关注单原子催化剂催化活性与催化选择性的提高,而其内在的反应机理以及活性位点同催化性能之间的构效关系往往被忽视。关于单原子催化剂中金属-基底相互作用的深入探讨能够帮助我们理解催化机理,并进一步指导多相催化剂的理性设计。值得注意的是,由于单原子催化剂均一的活性位点及其几何构型,我们可以通过理论计算以及一些原位的表征技术,来揭示其中的金属-基底相互作用,继而进一步促进单原子催化领域的发展以及多相催化剂的理性设计。这篇综述总结了金属-基底相互作用的基本概念,其作用,以及其在一些重要多相催化中的应用,最后提出了金属-基底相互作用在单原子催化领域所面临的挑战与机遇。  相似文献   

19.
The energy crisis and environmental pollution have forced scientists to explore alternative energy conversion and storage devices. The anodic reactions of these devices are all oxygen evolution reactions (OER), so the development of efficient OER electrocatalysts is of great significance. At the same time, understanding the reaction mechanism of OER is conducive to the rational design of efficient OER electrocatalysts. In general, catalytic active centers play a direct role in OER performance. In this paper, a series of stable bimetallic metal–organic frameworks (MOFs, named as Fe3-Con-X2, n=2, 3 and X=F, Cl, Br) with similar structure were synthesized by changing the halogen coordinated with the cobalt metal active center, aiming to investigate the influence of halogen substitution effect on OER performance. It was found that the OER activity of Fe3-Co3-F2 is much better than Fe3-Co2-Cl2 and Fe3-Co2-Br2, indicating that the regulation of the electronegativity change of the coordination halogen atom can regulate the coordination electron structure of the metal active center, thereby achieving effective regulation of OER performance.  相似文献   

20.
单原子催化剂是一类以相互孤立的单个金属原子作为催化活性中心的、 具有高原子经济性及高活性的负载型催化剂, 被广泛应用于能源电催化领域. 近年来, 通过使用两种或两种以上原子与活性中心金属原子配位, 构建具有异原子配位结构的单原子材料, 展现了优异的电催化性能. 研究发现, 这种不对称的配位结构有效调控了中心金属原子的电子结构, 优化了催化反应的吸附和脱附能量, 提高了电催化的性能. 本文综合评述了具有异原子配位结构碳基单原子电催化剂的合成策略、 表征技术与方法, 以及在前沿能源电催化应用中的催化剂性能与结构之间的构效关系, 并展望了异原子配位结构碳基单原子电催化剂的研究前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号