首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication‐assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication‐assisted spray ionization mass spectrometry (UASI–MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz‐based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI–MS. The feasibility of using this approach for real‐time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI–MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we describe a novel technique—ultrasonication-assisted spray ionization (UASI)—for the generation of singly charged and multiply charged gas-phase ions of biomolecules (e.g., amino acids, peptides, and proteins) from solution; this method employs a low-frequency ultrasonicator (ca. 40 kHz) in place of the high electric field required for electrospray ionization. When a capillary inlet is immersed into a sample solution within a vial subjected to ultrasonication, the solution is continually directed to the capillary outlet as a result of ultrasonication-assisted capillary action; an ultrasonic spray of the sample solution is emitted at the outlet of the tapered capillary, leading to the ready generation of gas-phase ions. Using an ion trap mass spectrometer, we found that singly charged amino acid and multiply charged peptides/proteins ions were generated through this single-step operation, which is both straightforward and extremely simple to perform. The setup is uncomplicated: only a low-frequency ultrasonicator and a tapered capillary are required to perform UASI. The mass spectra of the multiply charged peptides and proteins obtained from sample solutions subjected to UASI resemble those observed in ESI mass spectra.  相似文献   

3.
A straightforward on-line monitoring of organic reactions by ultrasonication-assisted spray ionization mass spectrometry (UASI MS) is demonstrated in this work.  相似文献   

4.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

5.
We have designed a semi‐online liquid chromatography/matrix‐assisted laser desorption/ionization mass spectrometry (LC/MALDI‐MS) system to introduce eluent from a octadecylsilyl (ODS) group modified monolithic silica capillary chromatographic column directly onto a sample plate for MALDI‐MS analysis. Our novel semi‐online system is useful for rapidly and sensitively examining the performance of a monolithic capillary column. An additional advantage is the small elution volume of a monolithic capillary column, which allows delicate eluents, such as 1,1,1,3,3,3,‐hexafluoroisopropyl alcohol (HFIP), to be used to achieve cost‐effective analysis. Using the semi‐online LC/MALDI‐MS system, chromatographic separation of polymers by the monolithic column with different eluents was studied. Separation of poly(methyl methacrylate) and Nylon 6/6 showed that the column functioned via size‐exclusion separation when tetrahydrofuran or HFIP eluent was used. On the other hand, the separation behavior of Nylon 11 indicated a reversed‐phase mode owing to the interaction of the polymer with the modified ODS group in the column. Using tetrahydrofuran/methanol (1:1, v/v) as the eluent, the LC/MALDI‐MS spectra of poly(lactic acid), which contains both linear and cyclic polymer structures, showed that the column could separate the hydrophobic cyclic polymer and elute it out relatively slowly. The monolithic column functions basically via size‐exclusion separation; the reversed‐phase separation by interaction with the ODS functions may have less influence on column separation. The semi‐online monolithic capillary LC/MALDI‐MS method we have developed should provide a means of effectively analyzing synthetic polymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study, we report the application of LC‐MS based on two different LC‐MS systems to mycotoxin analysis. The mycotoxins were extracted with an ACN/water/acetic acid mixture and directly injected into a LC‐MS/MS system without any dilution procedure. First, a sensitive and reliable HPLC‐ESI‐MS/MS method using selected reaction monitoring on a triple quadrupole mass spectrometer (TSQ Quantum Ultra AM) has been developed for determining 32 mycotoxins in crude extracts of wheat and maize. This method was operated both in positive and in negative ionization modes in two separate chromatographic runs. The method was validated by studies of spiked recoveries, linearity, matrix effect, intra‐assay precision and sensitivity. Further, we have developed and evaluated a method based on accurate mass measurements of extracted target ions in full scan mode using micro‐LC‐LTQ‐Orbitrap as a tool for fast quantitative analysis. Both instruments exhibited very high sensitivity and repeatability in positive ionization mode. Coupling of micro‐LC to Orbitrap technology was not applicable to the negatively ionizable compounds. The LC triple quadrupole MS method has proved to be stable in quantitation, as it is with respect to the matrix effects of grain samples.  相似文献   

7.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat‐soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization‐MS (DESI‐MS) and desorption atmospheric pressure photoionization‐MS (DAPPI‐MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M‐H]+ ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Normal phase liquid chromatography is a common mode for chiral separations. Many chiral amines are used as drugs or are important intermediates for drug synthesis. Electrospray ionization mass spectrometry is well known for its high sensitivity. However, when using normal phase liquid chromatography, electrospray ionization is hampered by the poor ionization efficiency of analytes from organic eluents. Continuous‐flow extractive desorption electrospray ionization, which introduces the eluents through a hypodermic needle into the electrospray plume is demonstrated here for its success to interface normal phase liquid chromatography to mass spectrometry detection. Such an approach was shown to be as or more sensitive than ultraviolet detection for a selected set of aromatic amine‐functionalized enantiomers. Also demonstrated is the direct infusion of cell extracts to monitor phospholipids from three different bacterial cells. Despite their presence in non‐electrospray‐ionization‐friendly extraction solvents, continuous‐flow extractive desorption electrospray ionization enabled the sensitive detection of phospholipids and the ability to tune ion forms through incorporation of different spray modifiers.  相似文献   

9.
A novel drug‐screening system, consisting of paper spray‐MS (PS‐MS) and a CE‐ESI‐MS method was developed. This system can be easily switched either to PS‐MS for rapidly screening samples or to the traditional CE‐ESI‐MS method for separation and to obtain detailed mass spectral information, while sharing the same mass spectrometer. In the former case, when a sharp (15°‐tip) chromatography paper was used, the optimized distance from the paper tip to the mass inlet was 7.7 mm, whereas the optimized distance for the CE‐ESI tip was ~13.5 mm. Using 4chloroamphetamine as a model compound, the LODs for PS‐MS and CE‐ESI‐MS were determined to ~0.1 and 0.25 ppm, respectively. Comparisons of results obtained using PS‐MS and CE‐ESI‐MS and the experimental conditions are described.  相似文献   

10.
In this study, a polarization‐induced electrospray ionization mass spectrometry (ESI‐MS) was developed. A micro‐sized sample droplet was deposited on a naturally available dielectric substrate such as a fruit or a stone, and then placed close to (~2 mm) the orifice of a mass spectrometer applied with a high voltage. Taylor cone was observed from the sample droplet, and a spray emitted from the cone apex was generated. The analyte ion signals derived from the droplet were obtained by the mass spectrometer. The ionization process is similar to that in ESI although no direct electric contact was applied on the sample site. The sample droplet polarized by the high electric field provided by the mass spectrometer initiated the ionization process. The dielectric sample loading substrate facilitated further the polarization process, resulting in the formation of Taylor cone. The mass spectral profiles obtained via this approach resembled those obtained using ESI‐MS. Multiply charged ions dominated the mass spectra of peptides and proteins, whereas singly charged ions dominated the mass spectra of small molecules such as amino acids and small organic molecules. In addition to liquid samples, this approach can be used for the analysis of solid and viscous samples. A small droplet containing suitable solvent (5–10 µl) was directly deposited on the surface of the solid (or viscous) sample, placed close the orifice of mass spectrometer applied with a high voltage. Taylor cone derived from the droplet was immediately formed followed by electrospray processes to generate gas‐phase ions for MS analysis. Analyte ions derived from the main ingredients of pharmaceutical tablets and viscous ointment can be extracted into the solvent droplet in situ and observed using a mass spectrometer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号