首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consumption of design drugs, frequently known as new psychoactive substances (NPS), has increased considerably worldwide, becoming a severe issue for the responsible governmental agencies. These illicit substances can be defined as synthetic compounds produced in clandestine laboratories in order to act as analogs of schedule drugs mimetizing its chemical structure and improving its pharmacological effects while hampering the control and making regulation more complicated. In this way, the development of new methodologies for chemical analysis of NPS drugs is indispensable to determine a novel class of drugs arising from the underground market. Therefore, this work shows the use of high‐resolution mass spectrometry Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) applying different ionization sources such as paper spray ionization (PSI) and electrospray ionization (ESI) in the evaluation of miscellaneous of seized drugs samples as blotter paper (n = 79) and tablet (n = 100). Also, an elucidative analysis was performed by ESI(+)MS/MS experiments, and fragmentation mechanisms were proposed to confirm the chemical structure of compounds identified. Besides, the results of ESI(+) and PSI(+)‐FT‐ICR MS were compared with those of GC–MS, revealing that ESI(+)MS showed greater detection efficiency among the methodologies employed in this study. Moreover, this study stands out as a guide for the chemical analysis of NPS drugs, highlighting the differences between the techniques of ESI(+)‐FT‐ICR MS, PSI(+)‐FT‐ICR MS, and GC–MS.  相似文献   

2.
The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC‐DAD/ESI‐MS/MS. Low‐molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium‐toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium‐toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The X‐ray photoelectron spectroscopy (XPS) study of black cherry (Prunus serotina), red oak (Quercus rubra), and red pine (Pinus resinosa) wood samples extracted with ethanol, ethanol—toluene, and water was conducted to evaluate chemical modifications occurring on the wood surface due to wood extractives, and derive possible implications for wood utilization. Results obtained indicate an increase in the O/C values following extraction treatments due to the partial removal of high carbon content extractives. The C 1s peaks indicated a decrease in the area of the C1 peak, known to originate from lignin and extractives following extraction. At the same time, a rise in the C2 peak (mainly originating from cellulose and hemicelluloses) was observed, indicating that more cellulose was exposed on the wood surface following extraction. The O 1s peaks showed an increase in the O1 peak originating from cellulose, therefore confirming the trend observed for C 1s peaks. These results suggest that extracted wood is more wettable because of the increased exposure of high‐oxygen‐content cellulose molecules, known to be more hydrophilic than lignin and high carbon content extractives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
天然药物结构研究是一项重要的项目。从天然药物中分离得到的单体,如果结构不清楚,即使具有很强的活性和较大的安全性,也无法进一步开展其药效学和毒理学研究,也就谈不上进行高质量的新药研究开发,也不可能进行人工合成或结构修饰、改造等工作,其应用价值将大大降低。在天然药物结构研究中,在通过理化方法对化合物类型初步断定后,还需通过谱学方法对其相对分子质量、官能团、不饱和度、分子式等进行进一步研究。质谱可用于确定相对分子质量及求算分子式和提供其它结构信息。此外,在一定条件下化合物的碎裂遵循一定的规律,通过比较试样与标准品在同一装置,同一条件下测得的质谱图,可以鉴定是否为同一化合物。对于未知化合物,可由分子离子丢失的碎片大小或由碎片离子的m/z值及碎裂特征推定或者复核分子的部分结构。  相似文献   

5.
In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM‐PARAFAC). EEM‐PARAFAC identified four humic‐like components and one protein‐like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC‐EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV‐Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT‐ICR MS). The FT‐ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen‐rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT‐ICR MS has the potential to provide significant molecular‐based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.  相似文献   

6.
The analysis of crude oil samples remains a tough challenge due to the complexity of the matrix and the broad range of physical and chemical properties of the various individual compounds present. In this work, atmospheric pressure laser ionization (APLI) is utilized as a complementary tool to other ionization techniques for crude oil analysis. Mass spectra obtained with electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) are compared. APLI is primarily sensitive towards non‐polar aromatic hydrocarbons, which are generally present in high amounts especially in heavy crude oil samples. The ionization mechanisms of APLI vs. APPI are further investigated. The results indicate the advantages of APLI over established methods like ESI and APPI. The application of APLI in combination with Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) is thus demonstrated to be a powerful tool for the analysis of aromatic species in complex crude oil fractions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
采用改进的碱液萃取方法分离杜巴原油中的酸性化合物(主要是环烷酸),通过高分辨质谱分析萃取过程中不同组分酸性化合物组成,以研究碱萃取前后酸性化合物的分布与组成特征。实验结果表明,电喷雾傅立叶变换离子回旋共振高分辨质谱(ESI-FT-ICR-MS)是分析原油中酸性化合物的强有力的手段;酸性化合物分布于碱萃取前后的各个组分中,但其组成有明显的差异,碱液萃取出的石油酸主要是相对分子质量小于500的酸性组分,增加反萃取溶剂的用量和极性有利于脱除萃取物中的非碱性氮化合物,对石油羧酸的组成影响不大。  相似文献   

8.
Crude oil contaminated soil cores were collected from a basin that contained oily solids left from three decades of oil production. Hydrocarbon biomarker analyses revealed that the soil extracts were moderately biodegraded compared with the non‐degraded source oil. The degree of biodegradation also decreased with core depth (7 cm to 1 m). These data were correlated to compositional changes observed in acidic NSO‐compounds that were selectively ionized and mass resolved by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI FT‐ICR MS). Among the NSO‐compounds ionized, the increase in naphthenic acid concentration (e.g., acyclic and alicyclic carboxylic acids) best correlated with the increase in biodegradation (e.g., from non‐degraded to moderately degraded) as determined by the hydrocarbon biomarker analyses. The most biodegraded surface extracts (7 cm) exhibited an 80% increase in the abundance of acids relative to the source oil. Use of an internal standard allowed the semi‐quantitative determination of the total naphthenic acid concentration, which decreased significantly (P < 0.05) with soil depth. Furthermore, the shift to higher double bond equivalents (DBEs), from acyclic to alicyclic acids, indicated that the increase in acids in the soil extracts was predominately due to biotic processes. This work demonstrates the potential of ESI FT‐ICR MS as a semi‐quantitative tool to monitor the production of naphthenic acids during crude oil biotransformation in the environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Comprehensive analysis of high‐resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT‐ICR‐MS) using matrix‐assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two‐component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI‐FT‐ICR‐MS analysis were dichloromethane‐acetone and dichloromethane‐ethanol. The obtained MALDI‐FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420–2200, and the obtained APCI‐FTMS mass spectrum contains three clusters of peaks in the m/z range of 380–910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C15H24 units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI‐FTMS and APCI‐FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI‐FTMS and APCI‐FTMS mass spectrum, besides the oxidized C30, triterpenoids also peaks corresponding to C29 and C31 derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na+ adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Sodium azide has rarely been studied in gas phase or in the form of cluster ions and as a model of solid energetic substances and inorganic azide salt was ionized by electrospray ionization (ESI) and studied by high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) systematically. This paper highlights the effects of experimental conditions on the formation of salt cluster and the collision activation dissociation pathways of cluster ions to develop a microscopic understanding of inorganic azide salt clusters.  相似文献   

12.
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, an approach using high‐performance liquid chromatography coupled with diode‐array detection and Fourier‐transform ion cyclotron resonance mass spectrometer (HPLC‐FT‐ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS‐3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC‐FT‐ICR MS method with ultra‐high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
2,5‐Dihydroxybenzoic acid (DHB) is one of the most widely used and studied matrix compounds in matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. However, the influence of ageing of the DHB solution on the MALDI mass spectra has not been yet systematically studied. In this work, the possible changes occurring in the acidified acetonitrile/water solution of the MALDI matrix compound DHB during 1‐year usage period have been monitored with MALDI‐Fourier transform ion cyclotron resonance mass spectrometer (MALDI‐FT‐ICR‐MS) and attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) spectroscopy. No significant ageing products have been detected. The ability of the aged DHB solution to act as a MALDI matrix was tested with two materials widely used in art and conservation – bone glue (a proteinaceous material) and shellac resin (a resinous material) – and good results were obtained. A number of peaks in the mass spectra measured from the DHB solution were identified, which can be used for internal calibration of the mass axis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
des‐7′‐O‐methylroraimine (compound 1) and epi‐des‐7′‐O‐methylroraimine (compound 2), two new isomeric bisbenzylisoquinoline alkaloids were isolated and characterized as a mixture from the rhizomes of Cissampelos sympodialis Eichl. The unambiguous structural elucidation of both isomers was performed with the aid of HR‐ESI‐MS, FT‐IR, and NMR techniques including COSY, HMQC, HMBC, and NOESY. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A combination of methodologies using the extremely high mass accuracy and resolution of 15‐T Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry (MS) was introduced for the identification of intact cancer cell phospholipids. Lipids from a malignant glioma cell line were initially analyzed at a resolution of >200 000 and identified by setting the mass tolerance to ±1 mDa using matrix‐assisted laser desorption/ionization (MALDI) 15‐T FT‐ICR MS in positive ion mode. In most cases, a database search of potential lipid candidates using the exact masses of the lipids yielded only one possible chemical composition. Extremely high mass accuracy (<0.1 ppm) was then attained by using previously identified lipids as internal standards. This, combined with an extremely high resolution (>800 000), yielded well‐resolved isotopic fine structures allowing for the identification of lipids by MALDI 15‐T FT‐ICR MS without using tandem mass spectrometric (MS/MS) analysis. Using this method, a total of 38 unique lipids were successfully identified. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
应用高效液相色谱质谱联用方法(HPLC-ESI-MSn)研究了甘草提取物中的七种化合物,四种三萜类化合物和三种黄酮类化合物。通过多极串联质谱(ESI-MSn)和多极串联傅里叶变换回旋共振质谱(FT-ICR-MSn)法研究了它们的碎裂规律。通过比较保留时间和质谱数据对上述七种化合物进行了归属,并阐述了其可能的质谱裂解途径。以上结果显示ESI-MSn和FT-ICR-MSn是非常有效的分析三萜类化合物和黄酮类化合物结构的工具。  相似文献   

19.
20.
In this work, laser‐enhanced in‐source decay (LEISD) technique of matrix‐assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI‐FT‐ICR‐MS) was used to distinguish reducing and nonreducing carbohydrates. Interestingly, easier cleavage of (1 → 2)‐linked glycosidic bonds for nonreducing carbohydrates containing D‐fructofuranosyl units was observed in MALDI‐FT‐ICR‐MS, which was in agreement with the result of theoretical calculation by the software package Gaussian 09. Importantly, no cross‐ring cleavage of fructofuranosyl residues was detected in the LEISD spectra of nonreducing carbohydrates. LEISD method therefore offers an attractive alternative for fast and efficient differentiation of reducing and nonreducing carbohydrates, and the positions of nonreducing monosaccharide residues in a carbohydrate chain could be easily speculated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号