首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of vanadium(III) complexes, namely {SNO}VCl2(THF)2 ( 2a , SNO = thiophene‐(N═CH)‐phenol; 2b , SNO = 5‐phenylthiophene‐(N═CH)‐phenol; 2c , SNO = 5‐phenylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2d , SNO = 5‐methylthiophene‐(N═CH)‐phenol; 2e , SNO = 5‐methylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2f , SNO = 5‐methylthiophene‐(N═CH)‐2‐methylphenol; 2g , SNO = 5‐methylthiophene‐(N═CH)‐4‐fluorophenol), were synthesized by reaction of VCl3(THF)3 with phenoxy–imine–thiophene proligands ( 1a – g ). All vanadium(III) complexes were characterized using elemental analysis and infrared and electron paramagnetic resonance spectroscopies. Upon activation with methylaluminoxane (MAO), vanadium precatalysts 2a – g proved active in the polymerization of ethylene (213.6–887.2 kg polyethylene (mol[V])−1⋅h−1), yielding high‐density polyethylenes with melting temperatures in the range 133–136 °C and crystallinities varying from 28 to 41%. The 2e/ MAO catalyst system was able to copolymerize ethylene with 1‐hexene affording poly(ethylene‐co ‐1‐hexene)s with melting temperatures varying from 126 to 102 °C and co‐monomer incorporation in the range 3.60–4.00%.  相似文献   

2.
In the presence of iron pentacarbonyl, photochemical reaction between phenylisocyanate and ferrocenylacetylene results in ferrapyrrolinone complex [Fe2(CO)62‐η3‐FcC═C(H)C(O)NPh)] ( 1 ) and maleimide 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione ( 2 ). Under similar experimental conditions, ferrocenyl−/phenyl‐substituted butadiyne primarily shows the activation of only one C☰C bond and results in ferrapyrrolinone complexes [Fe2(CO)62‐η3‐FcC═C(C☰CR)C(O)NPh)] ( 3 , R = Fc; 3a , R = Ph), maleimides 3‐ferrocenyl‐1‐phenyl‐4‐(ferrocenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5 ) and 3‐ferrocenyl‐1‐phenyl‐4‐(phenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5a ) and [Fe2(CO)62‐η3‐FcC═C(R)C(O)NPh)] ( 4 ; R  = 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione). Compound 4 consists of ferrapyrrolinone and a maleimide unit, formed by the activation of both C☰C bonds of diferrocenylbutadiyne. Activation of both C☰C bonds in a substituted butadiyne is a rare observation. Formation of the ferrapyrrolinone compounds is an advance over the earlier reported methods which generally use internal alkynes and involve prior synthesis of other clusters.  相似文献   

3.
The molecular structure and spectroscopic properties of a series of phenylplatinum complexes containing silsesquioxanate and phosphine ligands with general formula trans-[Pt{O10Si7(R)7(OH)2}(Ph)(L)2] (1: R = cyclo-C5H9, L = PEt3; 2: R = iso-C4H9, L = PEt3; 3: R = CH3, L = PEt3; 4: R = cyclo-C5H9, L = PMe3; 5: R = cyclo-C5H9, L = PMe2Ph; 6: R = cyclo-C5H9, L = PPh2Me; 7: R = cyclo-C5H9, L = PPh3) have been investigated by DFT/OPW91/6-31G(d) calculations, 1H, 13C, 29Si and 31P NMR and IR spectroscopy. DFT molecular modeling based on available X-ray and NMR data for complexes 1 and 2 allowed deriving structure-NMR spectra correlations. It was found that the alkyl substituents (R) attached to Si atoms, cyclo-C5H9, iso-C4H9 and CH3, slightly influence the geometry and multinuclear NMR parameters of the complexes in the series studied. The molecular structures of the Pt(II) complexes with R = cyclo-C5H9 (47) were predicted by DFT calculations of their simplified models with R = CH3 (4?7′). The geometry optimizations of 4?7′ showed square-planar configuration of Pt(II) center bonded to two trans phosphine ligands, a phenyl group and an O-monocoordinated silsesquioxanate. The structures 4?6′ are stabilized by two intramolecular hydrogen bonds similar to 1 and 2. A fast conformer exchange process A?B and switching of H-bonds in solution of 16 were suggested based on (i) the calculated conformer energies and small barrier of the process, and (ii) the observed single 1H NMR signal at low magnetic field. The stability of the Pt(II) complexes depends on the nature of the phosphine ligands and decreases in the order PMe2Ph > PMe3 > PPh2Me > PEt3 > PPh3. The PPh3 ligands attached to Pt(II) in 7 cause the largest geometry changes and a new set of weaker hydrogen bonds. The comparison of the calculated NMR and IR parameters with the experimental spectroscopic data reveals good coincidence and thus confirmed the suggested molecular structures.  相似文献   

4.
Reactions of pyridine imines [C5H4N‐2‐C(H) = N‐C6H4‐R] [R = H (1), CH3 (2), OMe (3), CF3 (4), Cl (5), Br (6)] with Ru3(CO)12 in refluxing toluene gave the corresponding dinuclear ruthenium carbonyl complexes of the type {μη2‐CH[(2‐C5H4N)(N‐C6H4‐R)]}2Ru2(CO)4(μ‐CO) [R = H (7); CH3 (8); OMe (9); CF3 (10); Cl (11); Br (12)]. All six novel complexes were separated by chromatography, and fully characterized by elemental analysis, IR, NMR spectroscopy. Molecular structures of 7, 10, 11, and 12 were determined by X‐ray crystal diffraction. Further, the catalytic performance of these complexes was also tested. The combination of {μη2‐CH[(2‐C5H4N)(N‐C6H4‐R)]}2Ru2(CO)4(μ‐CO) and NMO afforded an efficient catalytic system for the oxidation of a variety secondary alcohols.  相似文献   

5.
A series of para‐toluene sulfonamide ligands [TsNHPr‐i( HL 1 ), TsNHBu‐t( HL 2 ), TsNHPh( HL 3 ), TsNHPhMe‐p( HL 4 ), TsNHPhOMe‐p( HL 5 )] were synthesized by amidation using para‐toluene sulfonyl chloride reacting with different primary amines. A series of homoleptic lanthanide complexes (Ln L3, 1–10) (Ln = La, L = L1 ( 1 ), Ln = Gd, L = L2 ( 2 ), Ln = La, L = L2 ( 3 ), Ln = Gd, L = L2( 4 ), Ln = La, L = L3 ( 5 ), Ln = Gd, L = L3 ( 6 ), Ln = La, L = L4 ( 7 ), Ln = Gd, L = L4( 8 ), Ln = La, L = L5 ( 9 ), Ln = Gd, L = L5 ( 10 )) were prepared by amine elimination reactions of the ligands with Ln[N(SiMe3)2]3 (Ln = La, Gd). Complexes 1 , 3 , 5 , 7 and 9 were all characterized by NMR spectra, and the structures of complex 3 was determined by single‐crystal X‐ray diffraction. Complex 3 crystallizes a binuclear cluster, consisting of two La3+ and six (TsNBu‐t) anions. Three (TsNBu‐t) anions are chelating to each La3+ as bidentate model with O and N forming three‐membered chelate rings; one of three anions is bridging to another La3+ via oxygen. All complexes were characterized using elemental analysis and infrared spectra. The catalytic properties of complexes 1–10 for the ring‐opening polymerization of ε‐caprolactone were studied and the results showed that all complexes are efficient initiators for this ring‐opening polymerization reaction.  相似文献   

6.
The reactions of triphenylantimony(v) isopropoxide with 2,2-disubstituted benzothiazolines in a 1:2 molar ratio in refluxing benzene solution yielded the corresponding triphenylantimony(v) derivatives (1–5) of the type Ph3Sb[SC6H4N: C(R)CH2C(O)R']2, [Where, R═CH3, R'═CH3(1); R═CH3, R'═C6H5(2); R═CH3, R'═4-CH3C6H4(3); R═CH3, R'═4-ClC6H4(4); and R═CF3, R'═C6H5(5)]. All of these newly synthesized derivatives have been characterized by elemental analyses and molecular weight measurements as well as IR and NMR [1H and 13C] spectral studies. On the basis of spectral data, seven-coordination around central antimony atom has been assigned to these derivatives.  相似文献   

7.
The synthesis of a series of ruthenium 1,5-disubstituted 1,2,3-triazolato complexes, 1,5-disubstituted 1,2,3-triazoles, and a triazolium salt is reported. Treatment of the ruthenium azido complex [Ru]-N3 ( 1 , [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with an excess of ethyl propiolate results in the formation of a mixture of the Z- and E-forms of zwitterionic N(1)-bound N(3)-ethyl acryl-4-carboxylate triazolato complexes [Ru]N3(CH=CHCO2Et)C2H(CO2) ( Z - 2 ) and ( E - 2 ). The arylation of 2 with aromatic bromides gives a series of cationic N(1)-bound N(3)-ethyl acryl-4-alkoxycarbonyl triazolato complexes {[Ru]N3(CH=CHCO2Et)C2H(CO2CH2R)}[Br] ( 3a , R = Ph ; 3b , R = C6F5; 3c , R = 4-C6H4CN, 3d , R = 2,6-C6H3F2) and the subsequent cleavage of the Ru-N bond of 3a–d gives 1,5-disubstituted 1,2,3-triazoles N3(CH=CHCO2Et)C2H(CO2CH2R) ( 4a , R = Ph; 4b , R = C6F5; 4c , R = 4-C6H4CN; 4d , R = 2,6-C6H3F2) and [Ru]-Br. A 1,2,3-triazolium salt [N3(CH=CHCO2Et)(CH2C6F5)C2H2][Br] ( 5 ) was formed by transformation of 4b in BrCH2C6F5/chloroform mixture. The structures of Z-3a and Z-5 were confirmed by single-crystal x-ray diffraction analysis and both complexes participate in non-covalent aromatic interactions in the solid-state structures which can be favorable in the binding of DNA/biomolecular targets and have shown great potential in the application of biologically active anticancer drugs.  相似文献   

8.
A series of new cyclopentadienyl molybdenum compounds bearing substituted phenanthroline ligands [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(N,NL)][BF4] (X = F, Cl, Br; N,NL = phen, 5‐NH2‐phen, 4,7‐Ph2‐phen) was prepared and characterized using infrared and NMR spectroscopies. Crystal structures of [(η5‐C5H4CH2C6H4F‐4)Mo(CO)2(NCMe)2][BF4], [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(phen)][BF4] (X = F, Cl, Br) and [(η5‐C5H4CH2C6H4Cl‐4)Mo(CO)2(4,7‐Ph2‐phen)][BF4]⋅(4,7‐Ph2‐phen)⋅HBF4 were determined using X‐ray diffraction analysis. Biological studies revealed a strong cytotoxic effect of the chelating ligands. Although the cytostatic effect of the halogen in the side chain of the cyclopentadienyl ring is negligible, it could be used for future post‐modification of these types of cytotoxic active molybdenum‐based compounds.  相似文献   

9.
Three new octanuclear compounds were prepared from reactions of [Mn(O2CR)2]·2H2O (R = Et or Ph) with the diols 1,3-propanediol (pdH2) or 2-methyl-1,3-propanediol (mpdH2) in the presence of NaN3. All three compounds [Mn8(N3)4(O2CR)6(L)4(py)6] (L = pd2−, R = Et 1; L = mpd2−, R = Et 2; L = pd2−, R = Ph 3) (py = pyridine) possess a novel near-planar, rod-like topology. Dc and ac magnetic susceptibility studies in the 2–300 K range for complexes 1 and 2 revealed the presence of dominant antiferromagnetic exchange interactions, leading to diamagnetic ground spin states.  相似文献   

10.
The reactions of 4-methoxybenzoylmethylenetriphenylphosphorane ylide (MOBPPY), {(Ph)3PCHCOC6H4OMe}, and 4-flourobenzoylmethylenetriphenylphosphorane ylide (FBPPY) with [Pd(C6H4CH2NH22-C-N)ClL] (L = Py, 3-MePy, 4-MePy, or PPh3), in equimolar ratios in CH2Cl2 yield [Pd(C6H4CH2NH22-C-N)L (Ye)]TfO [(L = PPh3, Ye = MOBPPY; L = PPh3, Ye = FBPPY; L = Py, Ye = MOBPPY; or L = 3-MePy, Ye = MOBPPY]. The reaction of MOBPPY with AgOTf (OTf = CF3SO3) in molar ratios (2:1) using dry acetone as solvent gives [Ag(MOBPPY)2]OTf.  相似文献   

11.
The modes of interaction of donor‐stabilized Group 13 hydrides (E=Al, Ga) were investigated towards 14‐ and 16‐electron transition‐metal fragments. More electron‐rich N‐heterocyclic carbene‐stabilized alanes/gallanes of the type NHC?EH3 (E=Al or Ga) exclusively generate κ2 complexes of the type [M(CO)42‐H3E?NHC)] with [M(CO)4(COD)] (M=Cr, Mo), including the first κ2 σ‐gallane complexes. β‐Diketiminato (′nacnac′)‐stabilized systems, {HC(MeCNDipp)2}EH2, show more diverse reactivity towards Group 6 carbonyl reagents. For {HC(MeCNDipp)2}AlH2, both κ1 and κ2 complexes were isolated, while [Cr(CO)42‐H2Ga{(NDippCMe)2CH})] is the only simple κ2 adduct of the nacnac‐stabilized gallane which can be trapped, albeit as a co‐crystallite with the (dehydrogenated) gallylene system [Cr(CO)5(Ga{(NDippCMe)2CH})]. Reaction of [Co2(CO)8] with {HC(MeCDippN)2}AlH2 generates [(OC)3Co(μ‐H)2Al{(NdippCme)2CH}][Co(CO)4] ( 12 ), which while retaining direct Al?H interactions, features a hitherto unprecedented degree of bond activation in a σ‐alane complex.  相似文献   

12.
A series of chiral pentane‐2,4‐diyl‐based thioether‐amine ligands [ 4 and 5 ; (R,S)‐ and (S,S)‐R1SCH(CH3)CH2CH(CH3)NHR2, respectively, where 4a R1 = iPr, R2 = Ph; 4b R1 = tBu, R2 = Ph; 4c R1 = 1‐Ad, R2 = Ph; 5a R1 = iPr, R2 = Ph; 5b R1 = tBu, R2 = Ph; 5c R1 = 1‐Ad, R2 = Ph; 5d R1 = iPr, R2 = 4‐MeOC6H4; 5e R1 = iPr, R2 = 4‐MeC6H4; 5f R1 = iPr, R2 = 3,5‐Me2C6H3] with stereogenic S‐ and N‐donor atoms has been prepared starting from cyclic sulfates via optically pure γ‐aminoalcohol or 2,4‐dimethylazetidine intermediates. The synthesis of the novel diastereomerically related ligand sets 4 and 5 was accomplished starting from the same source of chirality. The modular ligand structure and the novel synthetic strategies developed for their synthesis allowed the easy modification of the ligands’ (i) S‐ and (ii) N‐substituents, as well as (iii) the relative stereochemistry within the ligand backbone. Six‐membered [Pd(N,S)Cl2]‐type chelate complexes of the diastereomerically related ligands 4a and 5a were synthesized and characterized by X‐ray crystallography in the solid phase, by density functional theory calculations and in solution by NMR spectroscopy. The coordination of 5a resulted in the formation of a single chair conformation by the stereospecific locking of both stereolabile (N and S) donor atoms. In contrast, compound 4a forms rapidly equilibrating palladium species due to the fast inversion of the sulfur donor. Ligands with stereochemically fixed donor atoms provided robust and efficient catalytic systems that can be effectively applied in alkylene carbonates as green reaction media. Remarkably, the phosphine‐free catalysts are air‐stable, and at room temperature in the presence of moisture gave excellent ee’s (up to 93%) in asymmetric allylation processes thanks to the double stereoselective coordination.  相似文献   

13.
The hitherto unknown complexes, [M2(CO)6(μ-CO)(μ-L)], [M = Cr; 1, Mo; 2, W; 3] and [M2(CO)6(μ-CO)(μ-L′)], [M = Cr; 4, Mo; 5, W; 6] have been synthesized by the photochemical reactions of photogenerated intermediate, M(CO)5THF (M = Cr, Mo, W) with thio Schiff base ligands, N,N′-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehydephenoxy)butane (H 2 L) and N,N′-bis(2-aminothiophenol)-1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane (H 2 L′). The complexes have been characterized by elemental analysis, LC-mass spectrometry, magnetic studies, FT-IR and 1H NMR spectroscopy. The spectroscopic studies show that H 2 L and H 2 L′ ligands are converted to benzothiazole derivatives, L and L′ after UV irradiation and coordinated to the central metal as bridging ligands via the central azomethine nitrogen and sulphur atoms in 1–6.  相似文献   

14.
Five monophosphine‐substituted diiron propane‐1,2‐dithiolate complexes as the active site models of [FeFe]‐hydrogenases have been synthesized and characterized. Reactions of complex [Fe2(CO)6{μ‐SCH2CH(CH3)S}] ( 1 ) with a monophosphine ligand tris(4‐methylphenyl)phosphine, diphenyl‐2‐pyridylphosphine, tris(4‐chlorophenyl)phosphine, triphenylphosphine, or tris(4‐fluorophenyl)phosphine in the presence of the oxidative agent Me3NO·2H2O gave the monophosphine‐substituted diiron complexes [Fe2(CO)5(L){μ‐SCH2CH(CH3)S}] [L = P(4‐C6H4CH3)3, 2 ; Ph2P(2‐C5H4N), 3 ; P(4‐C6H4Cl)3, 4 ; PPh3, 5 ; P(4‐C6H4F)3, 6 ] in 81%–94% yields. Complexes 2 – 6 have been characterized by elemental analysis, spectroscopy, and X‐ray crystallography. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

15.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   

16.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).  相似文献   

17.
The unsymmetrical bis (arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐t‐BuC6H2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N‐aryl group bedecked with ortho‐substituted fluorobenzhydryl groups, have been employed in the preparation of the corresponding five‐coordinate cobalt (II) chelates, LCoCl2 ( Co1 – Co5 ); the symmetrical comparator [2,6‐{CMeN(2,6‐(4‐FC6H4)2CH)2–4‐t‐BuC6H2}2C5H3N]CoCl2 (Co6) is also reported. All cobaltous complexes are paramagnetic and have been characterized by 1H/19F NMR spectroscopy, FT‐IR spectroscopy and elemental analysis. The molecular structures of Co3 and Co6 highlight the different degrees of steric protection given to the metal center by the particular N‐aryl group combination. Depending on the aluminoxane co‐catalyst employed to activate the cobalt precatalyst, distinct variations in thermal stability and activity of the catalyst towards ethylene polymerization were exhibited. In particular with MAO, the resultant catalysts reached their optimal performance at 70 °C delivering high activities of up to 10.1 × 106 g PE (mol of Co)?1 h?1 with Co1  >  Co4  >  Co2  >  Co5  >  Co3 >>  Co6 . On the other hand, using MMAO, the catalysts operate most effectively at 30 °C but are by comparison less productive. In general, the polyethylenes were highly linear, narrowly disperse and displayed a wide range of molecular weights [Mw range: 18.5–58.7 kg mol?1 (MAO); 206.1–352.5 kg mol?1 (MMAO)].  相似文献   

18.
Reactions of substituted pyridylalkanol 6-CH3PyCH2CH(OH)R (R = Ph (L1H), R = 4-CH3C6H4 (L2H), R = 4-OCH3C6H4 (L3H), R = 4-ClC6H4 (L4H), R = 4-BrC6H4 (L5H), R = 4-CF3C6H4 (L6H)) with Ru3(CO)12 in refluxing tetrahydrofuran afforded the corresponding ruthenium carbonyl complexes [6-CH3PyCH2CHRO]2Ru3(CO)8 (R = Ph ( 1a ), R = 4-CH3C6H4 ( 1b ), R = 4-OCH3C6H4 ( 1c ), R = 4-ClC6H4 ( 1d ), R = 4-BrC6H4 ( 1e ), R = 4-CF3C6H4 ( 1f )) in good yields. These ruthenium complexes were well characterized using elemental analysis and Fourier transform infrared and NMR spectroscopies. Furthermore, their crystal structures were determined using single-crystal X-ray diffraction analysis. Complexes 1a – 1f were found to be highly active toward oxidation of a wide range of primary and secondary alcohols to corresponding aldehydes and ketones within 5 minutes in the presence of N-methylmorpholine-N-oxide as oxidant.  相似文献   

19.
Monomeric bis(isopropoxy) titanium complexes LTi(Oi Pr)2 (L =  ─ OC6H2–4‐R1–6‐R2–2‐CH2N[(CH2)2N(R3)2]CH2–4‐R4–6‐R5‐C6H2O ─ , R1 = R2 = t Bu, R3 = Et, R4 = R5 = Cl, (L1)Ti(Oi Pr)2; R1 = R2 = Me, R3 = Et, R4 = R5 = Me, (L2)Ti(Oi Pr)2; R1 = R2 = t Bu, R3 = Et, R4 = OMe, R5 = t Bu, (L3)Ti(Oi Pr)2; R1 = R4 = OMe, R3 = Et, R2 = R5 = t Bu, (L4)Ti(Oi Pr)2; R1 = R2 = t Bu, R3 = Me, R4 = OMe, R5 = t Bu, (L5)Ti(Oi Pr)2) supported by amine bis(phenolate) ligands were synthesized and characterized using NMR spectroscopy and elemental analysis. The solid‐state structure of (L3)Ti(Oi Pr)2 was determined using single‐crystal X‐ray diffraction. (L1–5)Ti(Oi Pr)2 were all found to initiate the ring‐opening polymerization of l ‐lactide and rac ‐lactide in a controlled manner at 110–160°C. As shown by kinetic studies, (L1)Ti(Oi Pr)2 polymerized l ‐lactide faster than did (L2–5)Ti(Oi Pr)2. In addition, good number‐average molecular weight and narrow polydispersity index (1.00–1.71) of polymers were also obtained. The microstructure of the polymers and a possible mechanism of coordination–insertion of polymerization were evidenced by MALDI‐TOF and 1H NMR spectra of the polylactides.  相似文献   

20.
Four ruthenium(II) complexes 1—4 [RN=CH‐(2,4‐(tBu)2C6H2O)]RuH(PPh3)2(CO) (R = C6H5, 1; R = 4‐MeC6H4, 2; R = 4‐ClC6H4, 3; R = 4‐BrC6H4, 4) bearing Schiff base ligands were prepared by treating RuHClCO(PPh3)3 with RN=CH‐(2,4‐(tBu)2C6H2OH (L1—L4) in the presence of triethylamine. Their structures were fully characterized by elemental analysis, IR, NMR spectroscopy and X‐ray crystallography. These Ru(II) complexes exhibit high catalytic performance and good functional‐group compatibility in the acceptorless dehydrogenation of secondary alcohols, affording the corresponding ketones in 82%—94% yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号