首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic chemical carbon cycle for a sustainable future   总被引:1,自引:0,他引:1  
Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also discuss in more detail the essential stages and the significant aspects of carbon capture and subsequent recycling. Our ability to develop a feasible anthropogenic chemical carbon cycle supplementing nature's photosynthesis also offers a new solution to one of the major challenges facing humankind.  相似文献   

2.
Over the last several years,the need to find clean and renewable energy sources has increased rapidly because current fossil fuels will not only eventually be depleted,but their continuous combustion leads to a dramatic increase in the carbon dioxide amount in atmosphere.Utilisation of the Sun’s radiation can provide a solution to both problems.Hydrogen fuel can be generated by using solar energy to split water,and liquid fuels can be produced via direct CO2 photoreduction.This would create an essentially free carbon or at least carbon neutral energy cycle.In this tutorial review,the current progress in fuels’ generation directly driven by solar energy is summarised.Fundamental mechanisms are discussed with suggestions for future research.  相似文献   

3.
For almost all of 4.5 billion years, natural forces have shaped Earth’s environment. But, during the past century, as a result of the Industrial Revolution, which has had enormous benefits for humans, the effects of human activities have become the main driver for climate change. The increase of atmospheric carbon dioxide caused by burning fossil fuels for energy to power the revolution causes an energy imbalance between incoming solar radiation and outgoing planetary emission. The imbalance is warming the planet and causing the atmosphere and oceans to warm, ice to melt, sea level to rise, and weather extremes to increase. In addition, dissolution of part of the carbon dioxide in the oceans is causing them to acidify, with possible negative effects on marine biota. As citizens of an interconnected global society and scientists who have the background to understand climate change, we have a responsibility first to understand the science. One resource that is available to help is the American Chemical Society Climate Science Toolkit, www.acs.org/climatescience. With this understanding our further responsibility as citizen scientists is to engage others in deliberative discussions on the science, to take actions ourselves to adapt to and mitigate human-caused climate change, and urge others to follow our example.  相似文献   

4.
Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon‐containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro‐oxidation of carbon‐containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro‐oxidation of carbon‐containing fuels in low‐temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro‐oxidation for carbon‐containing fuels in non‐steady‐state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel‐cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed.  相似文献   

5.
王旺银 《催化学报》2022,43(4):895-897
人工光合成是利用太阳能等可再生能源通过连续催化反应将水和二氧化碳转化为液态燃料的过程,是减少二氧化碳排放、实现绿色低碳发展的一种重要方法.人工光合成的目标产物不仅包括二氧化碳转化与利用得到的能源小分子,还包括淀粉和蛋白质等生物基大分子.在自然光合作用中,高等植物、绿藻和蓝细菌首先利用太阳能将水氧化放出氧气并产生还原型辅...  相似文献   

6.
The continuous excessive usage of fossil fuels has resulted in its fast depletion, leading to an escalating energy crisis as well as several environmental issues leading to increased research towards sustainable energy conversion. Electrocatalysts play crucial role in the development of numerous novel energy conversion devices, including fuel cells and solar fuel generators. In particular, high-efficiency and cost-effective catalysts are required for large-scale implementation of these new devices. Over the last few years, transition metal chalcogenides have emerged as highly efficient electrocatalysts for several electrochemical devices such as water splitting, carbon dioxide electroreduction, and, solar energy converters. These transition metal chalcogenides exhibit high electrochemical tunability, abundant active sites, and superior electrical conductivity. Hence, they have been actively explored for various electrocatalytic activities. Herein, we have provided comprehensive review of transition-metal chalcogenide electrocatalysts for hydrogen evolution, oxygen evolution, and carbon dioxide reduction and illustrated structure–property correlation that increases their catalytic activity.  相似文献   

7.
Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.  相似文献   

8.
Increasing energy demand in the world leads to more electricity generation mainly at fossil fuel power plants. Greenhouse gases are thus produced and mostly emitted to the atmosphere directly, resulting in global warming and climate change. Carbon dioxide is believed to be a main pollutant among greenhouse gases responsible from global warming. Conventional systems using mostly amine solutions to capture carbon dioxide at the source have some disadvantages, and alternatives are constantly being searched. In this work, a benign system of aqueous calcium acetate solution was investigated for this purpose. Calcium acetate is easy to produce, relatively cheap, environmentally friendly, nonhazardous, and noncorrosive. These properties make it a great alternative for use in capturing carbon dioxide. This absorption process is accompanied by chemical reaction. Therefore, the reaction kinetics needs to be investigated before its use in absorbers. A stirred cell reactor was used in the experiments using aqueous calcium acetate solution of different concentrations (2-20% w/w) and different carbon dioxide concentrations in gas mixtures (4.5-100% v/v dry carbon dioxide) at temperatures ranging from 286 to 352 K. The Gibbs free energy change for the overall reaction between carbon dioxide and aqueous calcium acetate solution was found to be –2.75 kJ/mol that shows the reaction is exergonic and occurs spontaneously. It was also found out that the reaction is pseudo–first order with respect to carbon dioxide which was also proven by calculating the Hatta number. Activation energy and Arrhenius (frequency) constant were also determined experimentally.  相似文献   

9.
The synthesis of renewable jet fuel from lignocellulosic platform compounds has drawn a lot of attention in recent years. So far, most work has concentrated on the production of conventional jet fuels. JP‐10 is an advanced jet fuel currently obtained from fossil energy. Due to its excellent properties, JP‐10 has been widely used in military aircraft. However, the high price and low availability limit its application in civil aviation. Here, we report a new strategy for the synthesis of bio‐JP‐10 fuel from furfuryl alcohol that is produced on an industrial scale from agricultural and forestry residues. Under the optimized conditions, bio‐JP‐10 fuel was produced with high overall carbon yields (≈65 %). A preliminary economic analysis indicates that the price of bio‐JP‐10 fuel can be greatly decreased from ≈7091 US$/ton (by fossil route) to less than 5600 US$/ton using our new strategy. This work makes the practical application of bio‐JP‐10 fuel forseeable.  相似文献   

10.
《中国化学快报》2022,33(8):3623-3631
As environmental crises such as global warming become more and more serious due to the large amount of carbon dioxide emitted by the burning of fossil fuels, much attention has been paid to carbon neutrality. Hydrogen, with zero carbon content, is a clean and renewable energy carrier having a large energy density. It is considered as one of the most desirable alternatives to fossil fuels. Electrochemical water splitting, unlike the steam reforming process accelerating fossil fuels depletion and CO2 emissions, can produce H2 powered by renewable energy such as solar or wind. As a promising way to promote carbon neutralization, hydrogen production by electrolysis of water is meaningful both in terms of scientific research and practical application. In order to drive electrochemical water splitting with low power consumption, efficient, durable and affordable electrocatalysts with low overpotentials are in urgent need. Therefore, this mini-review briefly introduces the current development status and mainstream obstacles of carbon-based materials used in electrochemical water splitting.  相似文献   

11.
Nature or Petrochemistry?—Biologically Degradable Materials   总被引:3,自引:0,他引:3  
Naturally occurring polymers have been utilized for a long time as materials, however, their application as plastics has been restricted because of their limited thermoplastic processability. Recently, the microbial synthesis of polyesters directly from carbohydrate sources has attracted considerable attention. The industrial-scale production of poly(lactic acid) from lactic acid generated by fermentation now provides a renewable resources-based polyester as a commodity plastic for the first time. The biodegradability of a given material is independent of its origin, and biodegradable plastics can equally well be prepared from fossil fuel feedstocks. A consideration of the overall carbon dioxide emissions and consumption of non-renewable resources over the entire life-cycle of a product is not necessarily favorable for plastics based on renewable resources with current technology-in addition to the feedstocks for the synthesis of the polymer materials, the feedstock for generation of the overall energy required for production and processing is decisive.  相似文献   

12.
As the nations of the world continue to develop, their industrialization and growing populations will require increasing amounts of energy. Yet, global energy consumption, even at present levels, has already given rise to major concerns over the security of future supplies, together with the attendant twin problems of environmental degradation and climate change. Accordingly, countries are examining a whole range of new policies and technology issues to make their energy futures ??sustainable??, that is, to maintain economic growth and cultural values whilst providing energy security and environmental protection. A step in the right direction is to place electrochemical power sources??serviceable, efficient and clean technology??at the cutting edge of energy strategies, regardless of the relatively low price of such traditional fuels as coal, mineral oil and natural gas. Following a chronicle of the events that led up to the discovery of batteries and fuel cells, the paper discusses the application of these devices as important technology for shifting primary energy demand away from fossil fuels and towards renewable sources that are more abundant, less expensive and/or more environmentally benign. Finally, consideration is given to the idea of introducing hydrogen as the universal vector for conveying renewable forms of energy and also as the ultimate non-polluting fuel. Fuel cells are the key enabling technology for a hydrogen economy. As requested, the paper opens with a brief account of the circumstances by which the author joined others on a fascinating journey on the electrochemical road to sustainability.  相似文献   

13.
Zeolite NaX (commonly known as zeolite 13X) has found wide use in industry for the separation of carbon dioxide from air, methane-containing landfill gas, and flue gases. Capture and sequestration of carbon dioxide has become of utmost importance to mitigate severe environmental problems associated to burning of fossil fuels, such as the greenhouse effect and the consequential warming of global climate. Due to its low energy consumption and ease of operation, the zeolite-13X molecular-sieve pressure-swing adsorption process has become the method of choice for the recovery and capture of carbon dioxide from air and flue gas. Accurate correlation of the equilibrium adsorption isotherms of carbon dioxide in zeolite NaX is required for the reliable modeling and simulation of that process. In this paper, we firstly show that none of the traditional adsorption isotherm models (such as those of Langmuir, Sips, Toth, UNILAN, and Dubinin–Astakhov) is entirely capable of correlating a published set of equilibrium adsorption isotherms of carbon dioxide in zeolite NaX that were measured over a range of eight decades of pressure. A generalized statistical thermodynamic adsorption (GSTA) model, which we had already derived and successfully applied to the adsorption of water vapor in zeolite 3A, is employed in this work to obtain a very accurate correlation of that set of adsorption isotherms of carbon dioxide in zeolite NaX, for the pressure range from 0.2 Pa to 6.4 MPa and in the temperature range from −78 to 150 °C. We also provide thermochemical and structural interpretations of the isotherms fit and make predictions for the isosteric heat of adsorption that are in excellent agreement with the available experimental data.  相似文献   

14.
韦童  李箭  贾礼超  池波  蒲健 《电化学》2020,26(2):198
固体氧化物燃料电池(solid oxide fuel cell,SOFC)是通过电化学反应将化石燃料(煤、石油和天然气等)、生物质燃料或其它碳氢燃料中的化学能直接转换为电能的发电装置,能量转换效率更高、污染更低,被公认为21世纪高效绿色能源技术. 但直接以碳氢化合物为燃料时,镍基阳极中容易产生积碳,从而失去电化学催化活性. 在阳极外侧进行一次燃料的预重整是一种行之有效的解决办法,其中高效稳定的重整催化剂至关重要. 本文将结合本课题组的研究进展对钙钛矿催化剂在燃料重整中的应用进行概述,并提出自己相应的观点和展望.  相似文献   

15.

Background

Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels.

Results

Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions.

Conclusions

Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.  相似文献   

16.
Herein a transition-metal catalyst system for the selective synthesis of cyclic and linear acetals from the combined utilization of carbon dioxide, molecular hydrogen, and biomass derived diols is presented. Detailed investigations on the substrate scope enabled the selectivity of the reaction to be largely guided and demonstrated the possibility of integrating a broad variety of substrate molecules. This approach allowed a change between the favored formation of cyclic acetals and linear acetals, originating from the bridging of two diols with a carbon-dioxide based methylene unit. This new synthesis option paves the way to novel fuels, solvents, or polymer building blocks, by the recently established “bio-hybrid” approach of integrating renewable energy, carbon dioxide, and biomass in a direct catalytic transformation.  相似文献   

17.
The transition from reliance on fossil fuels to long-term energy sources is a most urgent technical challenge to modern civilization. This paper outlines some materials problems associated with the transition to solar energy as a distributed source of (a) low-temperature heat for hot water, domestic heating, and refrigeration/air-conditioning, (b) electric power, and (c) fuel. Academy lecture delivered at the Indian Institute of Science, Bangalore, on 6 December 1978.  相似文献   

18.
At present, more than 80% of the world's energy demand is fulfilled by the burning of fossil fuels, which has caused the production of a large amount of greenhouse gases, leading to global warming and damage to the environment. The high consumption of fossil fuels every year causes the energy crisis to become increasingly serious. Finding a sustainable and pollution-free energy source is therefore essential. Among all forms of energy sources, solar energy is preferred because of its cleanliness and inexhaustible availability. The energy provided by one year of sunlight is more than 100 times the total energy in known fossil fuel reserves worldwide; however, the extent of solar energy currently used by mankind each year is minute; thus developments in solar energy are imperative. To address the urgent need for a renewable energy supply and to solve environmental problems, a variety of technologies in the field of photocatalysis have been developed. Photocatalytic technology has attracted significant attention because of its superior ability to convert clean solar energy into chemical fuels. Among the photocatalytic materials emerging in an endless stream, perovskite oxide, with the general formula of ABO3, has great potential in the fields of solar cells and photocatalysis as each site can be replaced by a variety of cations. Furthermore, owing to its unique properties such as high activity, robust stability, and facile structure adjustment, perovskite oxide photocatalysts have been widely used in water decomposition, carbon dioxide reduction and conversion, and nitrogen fixation. In terms of carbon dioxide reduction, oxide perovskites can achieve precise band gap and band edge tuning owing to its long charge diffusion length and flexibility in composition. For the development and utilization of solar energy in the environmental field, perovskite oxide and its derivatives (layered perovskite oxide) are used as photocatalysts for water decomposition and environmental remediation. In terms of nitrogen fixation, the conventional Haber-Bosh process for ammonia synthesis, which has been widely used in the past, requires high temperature and high energy. Therefore, we summarize the recent advances in perovskite oxide photocatalysts for nitrogen fixation from the aspect of activating the adsorbed N2 by weakening the N $ \equiv $N triple bond, promoting charge separation, and accelerating the charge transfer to the active sites to realize the photochemical reaction. Overall, this review article presents the structure and synthesis of perovskite oxide photocatalysis, focusing on the application of photocatalysis in water splitting, carbon dioxide reduction, and nitrogen fixation. This review concludes by presenting the current challenges and future prospects of perovskite oxide photocatalysts.   相似文献   

19.
蓝奔月  史海峰 《物理化学学报》2014,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题.利用太阳光和光催化材料将CO2还原为碳氢燃料,不仅可以减少空气中CO2浓度,降低温室效应的影响,还可以提供碳氢燃料,缓解能源短缺问题,因此日益受到各国科学家的高度关注.本文综述了光催化还原CO2为碳氢燃料的研究进展,介绍了光催化还原CO2的反应机理,并对现阶段报道的光催化还原CO2材料体系进行了整理和分类,包括TiO2光催化材料,ABO3型钙钛矿光催化材料,尖晶石型光催化材料,掺杂型光催化材料,复合光催化材料,V、W、Ge、Ga基光催化材料及石墨烯基光催化材料.评述了各种材料体系的特点及光催化性能的一些影响因素.最后对光催化还原CO2的研究前景进行了展望.  相似文献   

20.
Hydrogen is an important chemical feedstock for many industrial applications, and today, more than 95% of this feedstock is generated from fossil fuel sources such as reforming of natural gas. In addition, the production of hydrogen from fossil fuels represents most carbon dioxide emissions from large chemical processes such as ammonia generation. Renewable sources of hydrogen such as hydrogen from water electrolysis need to be driven to similar production costs as methane reforming to address global greenhouse gas emission concerns. Water electrolysis has begun to show scalability to relevant capacities to address this need, but materials and manufacturing advancements need to be made to meet the cost targets. This article describes specific needs for one pathway based on proton exchange membrane electrolysis technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号