首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The data on the dispersion of the permittivity ?*(ω) of 1,2-ethanediol over the temperature range 161–453 K and the frequency range 0.1 Hz–150 GHz were analyzed using the Dissado-Hill cluster model. The relaxation frequency ωp = τ DH ?1 and intra-(n DH) and intercluster (m DH) correlation parameters were calculated. The energy barrier to the libration of molecular axes in clusters was found to be B DH = 2.96 kJ/mol. The apparent enthalpy of activation was determined; it increased from ΔH DH exp # = 22.18 kJ/mol to ΔH DH exp # = 129.19 kJ/mol close to the glass transition temperature. The mean dipole moments $ \bar \mu _c The data on the dispersion of the permittivity ɛ*(ω) of 1,2-ethanediol over the temperature range 161–453 K and the frequency range 0.1 Hz–150 GHz were analyzed using the Dissado-Hill cluster model. The relaxation frequency ωp = τDH−1 and intra-(n DH) and intercluster (m DH) correlation parameters were calculated. The energy barrier to the libration of molecular axes in clusters was found to be B DH = 2.96 kJ/mol. The apparent enthalpy of activation was determined; it increased from ΔH DH exp# = 22.18 kJ/mol to ΔH DH exp# = 129.19 kJ/mol close to the glass transition temperature. The mean dipole moments of 1,2-ethanediol clusters were calculated; they decreased from 162920 to 18.08 D as the temperature increased from 161 to 453 K. According to approximate estimates, the number of 1,2-ethanediol molecules in a cluster /μv decreased from 72405 at 161 K to 8.04 at 453 K (μv is the dipole moment of the molecule in the vacuum), which substantiated the suggestion of the existence of a spatial structure close to the boiling point. Original Russian Text ? N.V. Lifanova, T.M. Usacheva, V.I. Zhuravlev, V.K. Matveev, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 10, pp. 1973–1981.  相似文献   

2.
The dielectric spectra of polypropyleneglycols H-(C3H6O) N p -OH (PPGs), where N p = 1, 2, 3, 7, 12, 17, 20, 34, 69, were analyzed in terms of the Dissado Hill (DH) cluster model above the vitrification temperatures. In PPGs, the structural clusters are associates formed by intra- and intermolecular hydrogen bonds. The activation processes of cleavage and formation of intermolecular hydrogen bonds in clusters, when the total number of intermolecular hydrogen bonds changes, are characterized by the parameter n DH. The fluctuation processes of simultaneous exchange of molecules between adjacent clusters correspond to redistributions of intermolecular hydrogen bonds between clusters, when only the position but not the total number of intermolecular hydrogen bonds changes, and are characterized by the parameter m DH. The relaxation time τDH at 303 K and 423 K and the parameters n DH and m DH of the dielectric spectra were calculated. The activation energies of relaxation in the range 210–323 K were determined. The mean statistic squares of the dipole moments of clusters 〈μc2〉 and di-PG, PPG-425 (N p = 7), and PPG-2025 (N p = 34) molecules 〈μm2〉 at 303 K and 423 K were calculated. The number of the units of the oxypropylene chains involved in relaxation was determined. The dependence of the parameters of the DH model, relaxation energies, 〈μc2〉 and 〈μm2〉 on N p were studied.  相似文献   

3.
In this paper the experimental data on dielectric permittivity of 1,3-, 1,4- and 2,3-butanediols within the frequency range from 1 MHz to 36 GHz and the temperature range from 283 to 423 K were analyzed. The correlation between relaxation parameters of the Davidson-Cole equation and molecular structure of the investigated butanediols was established. Values of average dipole moments of molecular clusters, 〈μc〉, were calculated according to the Dissado-Hill cluster theory. The dependence of 〈μc〉 on energy characteristics of the working model was revealed and discussed in details.  相似文献   

4.
Dielectric radiospectra (DRS) of 2,5-hexanediol and 1,2,6-hexanetriol at frequencies of 1 MHz, 9.375, 36.885, and 74.569 GHz in a temperature range of 303–423 K (above the glass transition temperatures) are studied. Experimental DRS are analyzed using the Dissado-Hill (DH) cluster model. The dependence of the equilibrium and relaxation characteristics of DRS on the number of OH groups is studied. The dipole moments of the clusters are calculated. The change in the orientation of the dipole moments of the molecules in the cluster during the rearranging of its structure is characterized through the unit vector of the longitudinal component of dipole moment M e of the cluster. The relation between a change in the Onsager-Kirkwood-Fröhlich correlation factor and the behavior of M e is shown.  相似文献   

5.
The dielectric relaxation spectra (DRS) of 1,2-ethanediol, 1,2-propanediol, and 1,2,6-gexanetriol are analyzed in terms of the Dissado-Hill (DH) model in a wide range of temperatures, with all parameters required for calculating the cluster dipole moments being determined within the DH molecular model itself. The dependence of the equilibrium and relaxation properties of DRS on the hydrocarbon radical length and the number of OH groups is studied. The dipole moments of the clusters are calculated. It is shown how the roles of the processes of intracluster rearrangement are redistributed due to the break of hydrogen bonds and fluctuation processes of synchronous exchange of molecules between the clusters.  相似文献   

6.
Density functional GGA-PW91 method with DNP basis set is applied to optimize the geometries of Ag n H (n = 1–10) clusters. For the lowest energy geometries of Ag n H (n = 1–10) clusters, the hydrogen atom prefers to occupy the two-fold coordination bridge site except the occupation of single-fold coordination site in AgH cluster. After adsorption of hydrogen atom, most Ag n structures are slightly perturbed and only the Ag6 structure in Ag6H cluster is distorted obviously. The Ag–Ag bond is strengthened and the strength of Ag–H bond exhibits a clear odd–even oscillation like the strength of Au–H bond in Au n H clusters, indicating that the hydrogen atom is more favorable to be adsorbed by odd-numbered pure silver clusters. The adsorption strength of small silver cluster toward H atom is obviously weaker than that of small gold cluster toward H atom due to the strong scalar relativistic effect in small gold cluster. The pronounced odd–even alternation of the magnetic moments is observed in Ag n H systems, indicating that the Ag n H clusters possess tunable magnetic properties by adsorbing hydrogen atom onto odd-numbered or even-numbered small silver cluster.  相似文献   

7.
The (CH3OH) n (n = 2–8) clusters formed via hydrogen bond (H-bonds) interactions have been studied systemically by density functional theory (DFT). The relevant geometries, energies, and IR characteristics of the intermolecular OH···O H-bonds have been investigated. The quantum theory of atoms in molecule (QTAIM) and natural bond orbital (NBO) analysis have also been applied to understand the nature of the hydrogen bonding interactions in clusters. The results show that both the strength of H-bonds and the deformation are important factors for the stability of (CH3OH) n clusters. The weakest H-bond was found in the dimer. The strengths of H-bonds in clusters increase from n = 2 to 8, moreover, the strengths of H-bonds in (CH3OH) n (n = 4–8) clusters are remarkably stronger than those in (CH3OH) n (n = 2, 3) clusters. The small differences of the strengths of H-bonds among (CH3OH) n (n = 6–8) clusters indicate that a partial covalent character is attributed to the H-bonds in these clusters. The linear relationships between the electron density of BCP (ρb) and the H···O bond length of H-bonds as well as the second-perturbation energies E(2) have also been investigated and used to study the nature of H-bonds, respectively.  相似文献   

8.
A series of alternating maleimide (MI) copolymers with fluorinated side chains have been investigated using broadband dielectric spectroscopy. The side chains consist of fluoroalkane (–C x F2x+1, x=1, 7, 9) end groups connected to the main chain via methylene spacers. The experiments were carried out in a frequency range of 0.1 Hz to 10 MHz and at temperatures between 120 K and 500 K. The fluorinated MI copolymers show a fast sub-T g (β) relaxation characterized by an Arrhenius-type temperature dependence with activation energy in the range of 30–37 kJ/mol. Two more processes (α and δ-like) are observed, corresponding to independent relaxations of the main chain and the fluoroalkane domains respectively. For shorter side chains, the δ-like process is not observed but instead another relaxation process, α S , occurs at temperatures higher than either the α and δ-like processes. When compared with unfluorinated MI copolymers, the fluorinated MI copolymers show the δ-like process and a slower β-relaxation unlike their unfluorinated counterparts. A model to explain the molecular origin of the four processes is proposed, supplemented by differential scanning calorimetry and published WAXS/SAXS data.  相似文献   

9.
Structures, binding energies, harmonic frequencies, dipole moments, HOMO–LUMO energy gaps and particularly atoms in molecules (AIM) analyses of some nanoannular carbon clusters (C4–C20) are investigated at B3LYP/6-31+G(d) level of theory. No correlation is found by plotting the calculated binding energies as a functional number of carbon atoms of carbon clusters. The calculated binding energies sharply increase from C4 to C10 while slowly from C10 to C20. The binding energies of C4n+2 clusters including C6, C10, C14, and C18 have a clear increase when compared with others indicating their aromatic characters which is confirmed by results of HOMO–LUMO energy gaps and geometrical parameters. AIM analyses show that most of our carbon clusters are topologically normal (non-conflict) with stable structures. Nevertheless, the topological networks of small antiaromatic rings, C4 and C8, at their equilibrium geometries may change via molecular vibrations. The existence of straight bond paths in 3D molecular graphs of carbon clusters with n > 10 implies that ring strains are decreased as the ring sizes grow. Except for C4 and C8, the ellipticity values for the remaining carbon clusters are small indicating that the C–C bond is conserved in these clusters. Dipole moments of even-numbered structures are negligible, whereas odd-numbered ones have μ values of 0.09−0.73 D.  相似文献   

10.
An all-electron scalar relativistic calculation on Cu n H (n = 1–13) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. Our results reveal that the hydrogen atom prefers to occupy the two fold coordination site for Cu n H (n = 2, 4–6, 8, 10–13) clusters, the single fold coordination site for Cu n H (n = 1, 3, 7) and the three fold coordination site for Cu9H cluster. For all Cu n H clusters, only the Cu11 structure in Cu11H is distorted obviously. After adsorption, the Cu–Cu bond is strengthened and the Cu–H bond of odd-numbered Cu n H clusters is relatively stronger than that of adjacent even-numbered Cu n H clusters. The Cu–Cu bond-length and Cu–H bond-length for all Cu n H clusters of our work are significantly shorter than those of previous work. This discrepancy can be explained in terms of the scalar relativistic effect. The most favorable adsorption between small copper clusters and hydrogen atom takes place in the case that hydrogen atom is adsorbed onto an odd-numbered pure Cu n cluster and becomes Cu n H cluster with even number of valence electrons. The odd–even alteration of magnetic moments is observed in Cu n H clusters and may provide the material with tunable code capacity of “0” and “1” by adsorbing a hydrogen atom onto odd- or even-numbered copper clusters.  相似文献   

11.
The monomer/dimer equilibrium has been studied for a series of alkyl and aryl substituted and functionalized iminochlorophosphane species of the type R–N=P–Cl. In agreement with experiment, theoretical data always favor the dimer when the group R is small, while bulky groups such as Mes* destabilize the dimer by a considerable steric repulsion. This effect is superimposed by electronic effects. Para-substitution in the aryl systems either favors the monomer (energy gain ca. 15–30 kJ/mol) when a π-electron donating group such as p-NMe2 is used or favors the dimer when a π-electron withdrawing group such as p-NO2 is used (energy gain ca. 1–13 kJ/mol).  相似文献   

12.
13.
14.
The enthalpies of combustion and formation of S-lactic acid at 298.15 K, Δc H mo(cr.) = −1337.9 ± 0.8 and Δf H mo(cr.) = −700.1 ± 0.9 kJ/mol, were determined by calorimetry. The temperature dependence of acid vapor pressure was studied by the transpiration method, and the enthalpy of its vaporization was obtained, Δvap H o(298.15 K) = 69.1 ± 1.0 kJ/mol. The temperature and enthalpy of fusion, T m (330.4 K) and Δm H o(298.15 K) = 14.7 ± 0.2 kJ/mol, were determined by differential scanning calorimetry. The enthalpy of formation of the acid in the gas phase was obtained. Ab initio methods were used to perform a conformational analysis of the acid, calculate fundamental vibration frequencies, moments of inertia, and total and relative energies of the stablest conformers. Thermodynamic properties were calculated in the ideal gas state over the temperature range 0–1500 K. A thermodynamic analysis of mutual transformation processes (the formation of SS- and RS(meso)-lactides from S-lactic acid and the racemization of these lactides) and the formation of poly-(RS)-lactide from S-lactic acid and SS- and RS(meso)-lactides was performed.  相似文献   

15.
Parameters of the formalism [1–6] describing spin crossover in the solid state have been defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance Lennard-Jones and electric dipole–dipole potentials have been used whereas in ionic systems Lennard-Jones and electric point-charge potentials have been used. Electric dipole–dipole interaction of neutral complexes brings about a positive excess energy controlled by the difference of electric dipole moments of HS and LS molecules. Differences of the order of Δμ = 1–2 D cause an abrupt spin crossover in systems with T1/2 = 100–150 K. Magnetic coupling contributes both to the excess energy and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic systems in the absence of specific interactions are characterised by very small excess energies corresponding to practically linear van’t Hoff plots. Detectable positive and negative excess energies in these systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO–LUMO overlap in HS–LS pairs can bring about a nontrivial variation of the shape of transition curves. Examples of regression analysis of experimental transition curves in terms of molecular potentials are given.  相似文献   

16.
The existence of a short C–H ⋯ π (alkyl–alkyne) interaction in the structure of a strained and relatively rigid tolanophane is expected to hinder the rotation about the C–C sp3 single bond. Variable-temperature NMR experiments (performed in three solvents, CDCl3, THF-d8, and acetone-d6) and ab initio density functional calculations were carried out to investigate its dynamic nature. An energy barrier of 48.6 kJ/mol is determined at coalescence (210 K) with acetone-d6 which is in good agreement with calculation result (54 kJ/mol). Correspondence: Hossein Reza Darabi, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, 14968-13151 Tehran, Iran.  相似文献   

17.
Summary. Parameters of the formalism [1–6] describing spin crossover in the solid state have been defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance Lennard-Jones and electric dipole–dipole potentials have been used whereas in ionic systems Lennard-Jones and electric point-charge potentials have been used. Electric dipole–dipole interaction of neutral complexes brings about a positive excess energy controlled by the difference of electric dipole moments of HS and LS molecules. Differences of the order of Δμ = 1–2 D cause an abrupt spin crossover in systems with T1/2 = 100–150 K. Magnetic coupling contributes both to the excess energy and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic systems in the absence of specific interactions are characterised by very small excess energies corresponding to practically linear van’t Hoff plots. Detectable positive and negative excess energies in these systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO–LUMO overlap in HS–LS pairs can bring about a nontrivial variation of the shape of transition curves. Examples of regression analysis of experimental transition curves in terms of molecular potentials are given.  相似文献   

18.
A set of all-electron scalar relativistic calculations on Au n Cu (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The lowest energy geometries of Au n Cu clusters may be considered as assemblies of triangular Au3 moieties substituted with one Cu atom at the highest coordinated site. All these lowest energy geometries of the Au n Cu clusters are slightly distorted but retain the planar structures of the Au n+1 clusters due to the strong scalar relativistic effects. The Au–Cu bonds are stronger, and a few Au–Au bonds far from the Cu atom are weaker, than the corresponding Au–Au bonds in pure Au n+1 clusters. After doping with a Cu atom, the thermodynamic stability and chemical reactivity are enhanced to some extent. The odd-numbered Au n Cu clusters with even numbers of valence electrons are more stable than the neighboring even-numbered Au n Cu clusters with odd numbers of valence electrons. Odd–even alternations of magnetic moments and electronic configurations for the Au n Cu clusters can be observed clearly and may be understood in terms of the electron pairing effect.  相似文献   

19.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7−10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer). Supported by the National Natural Science Foundation of China (Grant No. 20373021)  相似文献   

20.
A detailed dielectric characterization of the relaxation modes found in a poly(L-lactic acid), PLLA, film containing 0.4 mass% of water is provided. The sub-glass relaxation process is a superposition of two processes, one highly influenced by water with activation energy of 50 kJ mol–1, and another one, with longer relaxation times and lower intensity having activation energy of 38 kJ mol–1. Dried PLLA exhibits an abnormally broad secondary β-relaxation that probably corresponds to the superposition of multiple processes. Upon water sorption the strength of the more mobile process significantly increases being shifted to lower temperatures which allows the detection of the underlying process. The glass transition relaxation process is deviated to higher frequencies almost one decade due to the water plasticizing effect. The reported results show that small quantities of water may have a profound impact in the relaxational features in PLLA, which should be taken in account when considering the properties and performance of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号